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Abstract
Transformers make remarkable achievements
across numerous domains but especially in natu-
ral language processing. This new type of neural
network processes sequences without using recur-
rence. Instead, the models process multiple parts
of a sequence in parallel, using scaled dot-product
attention as their core mechanism. This survey
explains in detail how the architecture works, its
properties, and its applications.

1. Introduction
A transformer is a special type of neural network that has
performed exceptionally well in several sequence-based
tasks. Previously, Recurrent Neural Networks (RNNs) and
Long Short Term Memory (LSTMs) [10; 20] were the stan-
dards for sequential data and natural language processing
(NLP). Bahdanau et al. [4] further improved the dominant
models by equipping them with an attention mechanism.
Transformers removed this recurrence and instead only uses
attention that learns to simultaneously route information
from an entire segment of a sequence [38]. Transformers
are most successfully applied as language models such as
BERT and GPT-2 that transformed the field of NLP.

This paper provides a concise but detailed explanation of the
original architecture and the most important improvements
and innovations building on it. It is discussed how properties
arise from components like the attention mechanism and
what advantages and disadvantages this entails compared
to recurrence-based models. Some widely used models like
BERT, GPT-2, or XLNet are covered. While transformers
revolutionized NLP, their success in other fields cannot be
ignored. Additional interesting and creative applications
are highlighted. We consider under which circumstances
the models perform well but also where the theoretical limi-
tations and practical problems are. Possible solutions and
research ideas are proposed.

2. The original Transformer
The transformer of Vaswani et al. [38] consists of an encoder
and a decoder and processes multiple tokens of a sequence
in parallel. It was trained for machine translation, so in

Figure 1. Traditional transformer with an encoder layer on the left
and a decoder layer on the right. The inputs ’I am happy’ and the
previously generated token ’Ich’ are used to generate the current
token ’bin’ at inference time. (Image source: Figure 1 in [38])

our example, the tokens are words. An input segment is
an English sentence that should be translated into German.
Words are embedded as vectors with the same embedding
size se.

When translating ’I am happy’ into ’Ich bin froh’, the en-
coder takes all word embeddings of the input sentences to
produce three latent embeddings z also of size se. At each
timestep, the decoder generates a single token with the same
z as input for every decoder layer. The first decoder layer
also has all the previously generated tokens as input. At
timestep 2, for example, the decoder takes ’Ich’ that was
generated at timestep 1 and z as input to generate the token
’bin’ as illustrated in Figure 1.

In the first transformer, the encoder and decoder both con-
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tain 6 transformer layers. They themselves contain self-
attention layers, a fully connected feed-forward network,
and residual connections followed by layer normalization
[3]. The feed-forward layers have a single network with an
input and output dimension of se, which is applied to every
embedding.

Attention is the transformer’s core component and enables
us to attend differently to the input tokens for each generated
token. The specific mechanism we use is ’scaled dot-product
attention’, which first turns the embeddings into queries
Q, keys K and values V by multiplying them with three
different weight matrices. We compare every query with
every key to find the highly similar keys for each, meaning
that they have a high dot-product. To calculate all those
pairwise similarities, we multiply the matrices QKT . Every
key has a corresponding value that is produced from the
same embedding. For each query, our goal is to pay more
attention to the values whose keys had high similarity with
the query. We do so with softmax, which turns the similarity
scores into a distribution of attention scores that is multiplied
with the values.

Attention(Q,K, V ) = softmax

(
QKT

√
dk

)
V (1)

With a higher dimension of the keys or queries dk, the dot-
products QKT are more likely to have very high or low
values, meaning small gradients for the softmax. To avoid
the small gradients, we divide the dot-product by the square
root of dk.

In the encoder, the attention layers always take the same
embedding as input to calculate Q, K, and V , which is why
it is called self-attention. In contrast, the second attention
layer in the decoder receives its inputs from two sources.
The keys and values with extracted knowledge about the
input tokens come from the encoder. The queries come
from the decoder and select keys with corresponding values
such that we attend to the correct values for generating the
current token.

All the mentioned attention layers split the embeddings into
8 parts of size se/8, and for all eight parts, a set of queries,
keys, and values is calculated. These are used to calculate 8
different attention results that are concatenated and fed to a
linear layer to bring the dimension back to the embedding
size. We call this multi-head attention, and the idea behind
it is allowing our model to learn more attention patterns that
give us the right focus for different inputs.

Training and inference. During inference, one token is
generated at a time using all previously produced tokens
as discussed in the translation of ’I am happy’. At training
time, all output tokens are already known and can be used
as input to generate the whole output sentence at once. But
for the generation of any token like ’bin’, the decoder must

not be able to look at the word ’bin’ itself or any of the
words to the right of it since they would not be known
during inference. To prevent the decoder from ’cheating’ by
looking at future tokens, we mask the self-attention such that
for every word the decoder cannot see the word itself and all
the following words. The unknown embeddings are ignored
by setting the corresponding parts of the dot-product Q ·KT

to −∞ such that softmax produces no attention for those
spots. This masked attention enables training for multiple
tokens in parallel, leading to much lower train times. By
masking out future tokens during training, we also obtain
an autoregressive model, meaning that every prediction is
only conditioned on the previous tokens.

The output embeddings of the decoder need to be converted
to tokens. For this purpose, we use a last linear layer that
increases the output dimension from the embedding size to
the size of a specific dictionary. We use the softmax function
to turn the large vectors into probability distributions, and
our predictions are the tokens from the dictionary with the
highest probability. During training, we one-hot encode
the target tokens according to the dictionary and optimize
their cross-entropy loss with the generated probabilities via
gradient descent.

Positional encoding. The transformer should be able to use
the information about how the input tokens are ordered since
it is valuable knowledge for a sequence. However, the model
only uses scaled dot-product attention and fully connected
layers, which are both permutation invariant. This means
no order and distance relations can be captured, unlike if
we were using convolutions or recurrence. The solution is
adding a positional encoding that is different depending on
a token’s position in the sequence. Vaswani’s transformer
uses a pre-calculated encoding, but there are many valid
possibilities for either learned or deterministic encodings
[8; 14; 30].

3. Comparison with traditional Methods
Traditionally most tasks with sequential inputs were tackled
with recurrent models (RNNs, LSTMs [20]), often with an
encoder-decoder architecture for the common sequence to
sequence tasks like machine translation [10]. The encoder
RNN would generate a hidden state for each input token,
one after the other until the end of the input sequence. The
last hidden state is used by the decoder RNN to produce an
output token and a hidden state for the next token.

Recurrent models are naturally suited to process sequen-
tial data like language. Transformers lose this valuable
recurrence and have to use workarounds like the positional
encoding to use information about the sequence order. So
how can they outperform traditional models in so many
tasks? The great advantage of transformers is the constant
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path length between the input tokens and the generated to-
ken. When translating a 20-word sentence, an RNN has to
remember the semantic of the first word through 20 hidden
states until it can generate the first translated word. On
this large path, information is lost, making it hard to learn
and understand long-range dependencies. The problem be-
comes more severe the longer the input sequences and, for
instance, if the last generated word strongly depends on the
first word in the input. For a transformer, every generated
token has the same short pathlength for attending to any
input token independent of sequence length, making it easy
to learn long-range dependencies. This is crucial for lan-
guage, where a word at the end of a sentence often depends
on words at the beginning to define its meaning, just like
the word ’its’ in this very sentence.

Empirically transformers are more robust against adversarial
perturbations than their RNN-based counterparts [21]. For
the theoretical reasoning behind that fact, we think about
changing a single token of the input to a self-attention layer.
The influence on the output depends on the attention scores
produced between all queries and the altered key because it
determines the attention to the altered value. If the embed-
dings are sufficiently spread out in space (not all of them
are very similar), the key cannot produce large dot-products
with all queries. The attention to the perturbed value is
sparse, and therefore the influence on the layer’s output
is sparse. In the recurrent setting, altering a single word
changes all the following hidden states. Thus, it is easier for
an adversarial attacker to impact all the embeddings.

4. Transformer Improvements
Architecture Changes. Transformers perform well as lan-
guage models, which can predict the next word in a sentence
given the previous words such that they can generate text
to complete a sentence or answer a question. Most lan-
guage model transformers drop the encoder and only use
the decoder [2; 27], training it to produce the next word
of a sentence. Dropping the encoder means half as much
computational requirements and an even shorter pathlength
between the inputs and the embeddings of the generated
token.

Transformer-XL [13] is such an autoregressive language
model that solves an additional problem. Commonly, trans-
formers process around n = 512 tokens in parallel, and the
input sequence is chunked into this fixed length, disregard-
ing natural boundaries like sentences. The traditional archi-
tecture cannot use context from previous segments when
processing the current segment, leading to context-breaking
in the generated output. The solution is remembering the
hidden states of the previous segment and using the saved
states of layer l − 1 as additional input for layer l in the
current segment. This way, Transformer-XL can use con-

text from all L previous segments with L as the number
of layers. Longformer’s [5] solution to context-breaking
is making much larger segments with thousands of tokens
possible by only calculating the attentions of all n queries
to a few keys in a local window around the query. This is
comparable to how convolutional kernels in computer vi-
sion are slid over images instead of having a fully connected
layer. The changed attention is linear in segment length
n instead of the standard quadratic self-attention where n
queries attend to n keys.

Unsupervised Training. Using autoregressive text repro-
duction as a task to train transformers was made popular
with the models GPT [32] and GPT-2 [33]. GPT-2 proved
that language models that were trained entirely unsupervised
can compete with supervised methods for a variety of tasks.
The model solves and generalizes to these tasks in a zero-
shot fashion, where the objective is stated implicitly as a
text which the model has to complete. For a translation task,
the input would be a few pairs of English sentence
= German sentence and a final prompt of the form
English sentence =. This makes autoregressive lan-
guage models extremely flexible in their application.

BERT [14] uses a new bidirectional denoising pretraining
approach. In autoregressively trained decoder models with
masked attention, a token can only attend to the left of itself.
In language, the context from the right also matters. BERT
uses encoder layers, which have no masking so that the
attention goes both directions. Instead, the masking takes
place in the pretraining task that randomly replaces 15%
of the input tokens with a special token. The model has to
correctly generate the original tokens. The pretraining also
involves next-sentence prediction, where two sentences are
used as the input with a separator token between them and
a classification token appended at the beginning. For the
classification token, BERT has to produce a prediction of
whether the two sentences followed each other in the text or
not. The bidirectionality is natural for language and makes
BERT perform better for tasks such as classification. How-
ever, the autoregressive property is lost, which is inherent to
the principle of language models (generating the next word
depending on the previous ones). As such, BERT performs
worse at text generation [40]. BERT finds a lot of use, is
well investigated [22; 23], and a lot of work builds on it like
RoBERTa [28], which further tweaks the pretraining tasks
and its hyperparameters.

Computational Requirements. Transformer language
models are often large, and during training, the attention
mechanism needs to store O(n2) dot-products (n is segment
length). Reformer [24] uses attention with O(n · log(n))
that assigns similar queries and keys to buckets and only cal-
culates dot-products between keys and queries that are in the
same bucket. As a second trick, Reformer is made invertible
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by using reversible residual connections [17]. This means
the activations of the forward pass don’t have to be stored
since they can be recalculated during backpropagation such
that only the activations of a single layer need to be saved
simultaneously.

Analyzing the attention patterns of different attention heads
shows that some only attend to small parts of the segment,
suggesting that for most, the attention doesn’t need to span
the whole segment. A learned attention span for each head
was proven very successful [36] and can be improved such
that each head learns to distribute its attention over sparse
slices of the segment [12].

Another research direction is reducing model sizes after
training. Transformers can often be compressed substan-
tially with simple methods. For instance, 30% of BERTs
weights can be pruned by their magnitude without a signif-
icant loss in performance [18]. Especially attention heads
are shown to often encode simple positional relations [34],
and for most layers, only a few heads are relevant, meaning
that the majority can be pruned [29; 39]. ALBERT [26] is
an example that manages to compress BERT’s size by five
times while keeping the same performance.

5. Applications of Transformers
Transformers depend on a lot of training data and can cap-
ture long-range dependencies. In NLP, long-range depen-
dencies are relevant, and large text corpora are available,
which is why transformers shine in this field. The architec-
ture also works well on many other types of sequential data,
like in sequence labeling for genomes [11]. The Action-
Transformer [15] successfully annotates human actions in
videos, and for human trajectory prediction, a transformer
model is the current SOTA [16]. Spatio-temporal data is
processed successfully by models where there are two self-
attention mechanisms separately attending on the spatial
and the temporal dimension [1; 41].

Transformers have shown success in processing images as
a sequence of pixels. DEtectionTRansformer [7] performs
object detection with an encoder that gathers information
from the pixel sequence and a decoder that poses queries
for embeddings of bounding boxes. It performs on par with
other architectures that are much more complex.

In reinforcement learning, it is valuable to capture how ac-
tions influence rewards in the long term, and transformers
are good at that. Parisotto et al. [31] build on Transformer-
XL’s memory mechanism and replaces the residual con-
nections with a gating method [9]. The performance is
competitive with current LSTMs.

6. Transformer Limitations, Challenges and
Future Directions

Are some tasks just inherently reliant on recurrence and not
fit for transformers? It has been shown that self-attention is
computationally restricted and cannot capture some proper-
ties that can occur in sequences like recursion [19]. There is
empirical evidence that non-recurrent architectures perform
worse at tasks where the data contains hierarchical structure
[37]. This is relevant for the syntax of natural language,
which is a hierarchical structure of sentences, phrases, and
words. Encoding hierarchical structure in the embeddings
could increase the performance similar to the positional
encoding for capturing word order.

Transformer language models are large because, in NLP,
new SOTAs are often reached by models with ever more
parameters. From GPT (110 million) over BERT-Large
(340 million) and GPT-2 (1.5 billion) up to GPT-3 [6] (175
billion). Implications are that they can’t be trained on a
single GPU and that the largest models with the best results
are reserved to institutions with vast amounts of resources.
Pretraining a single model on hundreds of GPUs for days is
not uncommon [35; 42], which is expensive and consumes
a lot of energy.

The growing model sizes raise another concern. For in-
stance, GPT-3 claims to learn reasoning, which the authors
base on results for tasks like basic arithmetic while they can
never convincingly prove that GPT-3’s predictions were not
just part of the training data, but the outputs suspiciously
look like that is the case. At what point does performance
gain just come from having so many parameters that training
data is memorized by the network? It would be interesting
to use influence functions [25] to test what point of the
training data influenced a specific model output the most.
That way, we learn how much transformers rely on simply
reproducing their training data.

7. Conclusion
Transformers often replace recurrence based models for pro-
cessing sequential data because of their ability to better learn
long term dependencies and their parallel processing capa-
bilities. At the core of the architecture is scaled dot-product
attention, which allows for beneficial short path lengths but
is quadratically expensive with respect to segment length.
The most important application is in NLP. There has been
a lot of success in pretraining very large transformers as
language models that can then be finetuned for any NLP
task or even multiple tasks in a flexible way. The limit of
performance gain by increasing the model size is not found
yet. This upscaling raises problems like cost, energy con-
sumption, or accessibility. As a result, lots of methods have
been established to make transformers more efficient and
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smaller. Besides NLP, they are successful for many types
of sequential data like video or audio but also for data that
can be rewritten as a sequence like images as a string of
pixels. The transformer is a young architecture with a lot of
potential and active research.
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Figure 2. Attention layers can be visualized in a simple way. Each
pixel shows the softmax result of the queries and keys correspond-
ing to the tokens on the y- and x-axis. (Image source: Figure 3 in
[4])

A. Positional Encoding
One obvious positional encoding would be to directly use a
tokens position. This would have the disadvantage of large

values added to the token embedding. The model would also
have no understanding for positional embeddings that were
not encountered during training. Vaswani’s transformer
calculates the encoding for a token at position p using the
highs and lows of different frequency sinusoids depending
on the different indices i of a tokens embedding. For the first
indices the position p is fed to higher frequency sinusoids
and as i increases we use lower frequencies (until i reaches
the embedding size se). Intuitively this is the continuous
version of the highs and lows in a binary encoding.

Encodingi(p) =

{
sin(p/100002i/se) if i is even
cos(p/100002i/se) if i is odd

(2)
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