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NequIP, Kozinsky group, LiPS 



FLARE, Kozinsky group, H/Pt(111)



NequIP, Kozinsky group, Deca-Alanine
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Molecular dynamics

Empirical 𝐸 �⃗�! = −
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• Empirical 
• Simple and fast
• Up to trillions of atoms
• Up to milliseconds of simulation



Molecular dynamics

Quantum 
Mechanics 𝐸 �⃗�! = −
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• From first principles 
• Often good agreement with experiment without fitting
• Very expensive and prohibitive scaling
• Limited to hundreds of atoms and 100s ps of simulations



Molecular dynamics

ML 𝐸 �⃗�! = −
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• Fit to a limited library of quantum calculations
• Promises near-quantum accuracy
• Significantly improved speed and scaling
• Classical potential speeds and scales at ab-initio accuracy?
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How to represent atomistic systems?



1. Translations



2. Rotations



3. Reflections
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4. Permutation of atom indexing



Message Passing Neural Networks

𝑡: layer
𝑖, 𝑗: atom indices
h ∈ ℝ!

[1] Gilmer, J., Schoenholz, S. S., Riley, P. F., Vinyals, O., & Dahl, G. E. (2017, July). Neural message passing for quantum 
chemistry. In International Conference on Machine Learning (pp. 1263-1272). PMLR.
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Message Passing Neural Networks

Existing Message Passing Neural Networks (SchNet, DimeNet, PhysNet, …) are invariant to E(3)
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Invariance

𝑓 𝐷! 𝑔 𝑥 = 𝐼𝑓(𝑥)

=Input OutputFunction

Input Outputg Function

𝑓: 𝑋 → 𝑌 is said to be invariant w.r.t. the action of the group G, if ∀𝑔 ∈ 𝐺 and ∀𝑥 ∈ 𝑋: 



Message Passing Neural Networks

𝑡: layer
𝑖, 𝑗: atom indices
h ∈ ℝ*

[1] Gilmer, J., Schoenholz, S. S., Riley, P. F., Vinyals, O., & Dahl, G. E. (2017, July). Neural message passing for quantum 
chemistry. In International Conference on Machine Learning (pp. 1263-1272). PMLR.
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Equivariant Message Passing Neural Networks [1, 2, 3]

𝑡: layer
𝑖, 𝑗: atom indices
h ∈ ℝ+ ⊕ℝ+×-⊕⋯

[1] Thomas, N., Smidt, T., et al. arXiv preprint arXiv:1802.08219.
[2] Weiler, M., Geiger, M., et al. Advances in Neural Information Processing Systems, 31
[3] Kondor, R., Lin, Z., & Trivedi, S. (2018Advances in Neural Information Processing Systems, 31.
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Equivariance

𝑓 𝐷! 𝑔 𝑥 = 𝐷" 𝑔 𝑓(𝑥)

=Input g Function Output

gFunctionInput Output

𝑓: 𝑋 → 𝑌 is said to be equivariant w.r.t. the action of the group G, if ∀𝑔 ∈ 𝐺 and ∀𝑥 ∈ 𝑋: 



Tensor Features transform with the geometry under E(3) group actions 



Equivariance: tensor features

The inputs, internal features, and outputs of the model are

collections of individual geometric tensors that transform variously under 𝑂 3

Scalars Vectors

…

represented as

𝐕 =



Equivariance: tensor features

• Formally, each tensor inhabits an irreducible representation (irrep) of 
𝑂 3

• The irreps are indexed by:

• Rotation order ℓ ≥ 0:
• ℓ = 0: scalar
• ℓ = 1: vector
• ℓ ≥ 2: tensor

• A tensor of order ℓ has dimension 2ℓ + 1

[1] Thomas et al., “Tensor field networks: Rotation- and translation-equivariant neural networks for 3D point clouds”
[2] Geiger et al., e3nn documentation, e3nn.org

• Parity 𝑝 = ±1:
• 𝑝 = 1: invariant under inversion
• 𝑝 = −1: changes sign under inversion



Equivariance: tensor features from spherical harmonics

• How can we encode data in these tensors?

• Spherical harmonics 𝑌ℓ/ are a basis for functions on the sphere

• They decompose functions into tensors of various ℓ and 𝑝 = −1 ℓ

ℓ = 1

ℓ = 2

ℓ = 3



Equivariance: tensor features

• An entire feature array

inhabits a direct sum of irreps

ℓ = 0, 𝑝 = 1 ⊕ ℓ = 1, 𝑝 = −1 ⊕ (ℓ = 2, 𝑝 = 1)

Very general:
• Any physical quantity transforms with a representation of 𝑂(3)
• Any representation of 𝑂 3 decomposes into such a direct sum of irreps

[1] Thomas et al., “Tensor field networks: Rotation- and translation-equivariant neural networks for 3D point clouds”
[2] Geiger et al., e3nn documentation, e3nn.org

ℓ = 𝟎
𝒑 = 𝟏

ℓ = 𝟏
𝒑 = −𝟏

ℓ = 𝟐
𝒑 = 𝟏

…𝐕 =



No constraints, invariance, equivariance

𝐸

𝐸

𝐸

No constraints transforms arbitrarily

transforms arbitrarily

Invariance invariant
invariant

Equivariance invariant

equivariant

Input Internal features Output



Tensor product

• A bilinear, equivariant operation combining two tensors

• The Wigner 3j are a change of basis from the product back into 
irreps

• Can produce any ℓ* − ℓ+ ≤ ℓ,-. ≤ |ℓ* + ℓ+| and  𝑝,-. = 𝑝*𝑝+

Wigner 3j coefficients



Tensor product: examples

Scalar multiplication:
⊗ →

ℓ = 0, 𝑝 = 1 ℓ = 0, 𝑝 = 1 ℓ = 0, 𝑝 = 1

Vector-vector dot product:
⊗ →

ℓ = 1, 𝑝 = −1 ℓ = 1, 𝑝 = −1 ℓ = 0, 𝑝 = 1

Vector-vector cross product:
⊗ →

ℓ = 1, 𝑝 = −1 ℓ = 1, 𝑝 = −1 ℓ = 1, 𝑝 = 1



Equivariance dramatically improves MLIPs

• Examples:  NequIP [0], PaiNN [1], UNiTE [2], EGNN [3], etc.

• All existing equivariant neural network MLIPs are message-passing

[0] Batzner et al. “SE(3)-Equivariant Graph Neural Networks for Data-Efficient and Accurate Interatomic Potentials”

[1] K.T. Schutt, O.T. Unke, M. Gastegger. “Equivariant message passing for the prediction of tensorial properties and molecular spectra”

[2] Z. Qiao, A.S. Chirstensen, M. Welborn, F.R. Manby, A. Anandkumar, T.F. Miller III. “UNiTE: Unitary N-body Tensor Equivariant Network with 
Applications to Quantum Chemistry”

[3] V.G. Satorras, E. Hoogeboom, M. Welling. “E(n) Equivariant Graph Neural Networks”



NequIP demonstrated that equivariance leads fundamentally better molecular ML!

Invariant network

Equivariant network

Different Scaling Laws Complex, reactive systems

1000x fewer data 





r=6 Angstrom
96 atoms



r=36 Angstrom
20,834 atoms



Equivariance

Message Passing
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The Two-Track Architecture

Scalar / invariant track: 𝐱#! Tensor / equivariant track: 𝐕#!

All operations allowed Only E(3)-equivariant 
operations

Reasoning: scalars are cheap, tensors are expensive

Let large set of scalars control a small set of tensor operations!

Invariants Equivariants



Iterated tensor product increases correlation order

𝑘*

𝑗

𝑖

𝑘+

ℎ#,$* = *
+∈&(#)

𝑤#,+* (ℎ#,$*,-⊗𝑌#,+)

This induces a 3-body interaction 𝒊, 𝒋 ⊗ 𝒊, 𝒌 → 𝒊, 𝒋, 𝒌

Naively, this gives exponential scaling!



ℎ#,$* = *
+∈&(#)

𝑤#,+* (ℎ#,$*,-⊗𝑌#,+)

= *
+∈&(#)

ℎ#,$*,-⊗𝑤#,+* 𝑌#,+

= ℎ#,$*,-⊗∑+∈&(#)𝑤#,+* 𝑌 #,+

Density Trick1 removes exponential scaling

𝑘*

𝑗

𝑖

𝑘+

[1] Bartók, el al: On representing chemical environments. Phys. Rev. B: Condens. Matter Mater. Phys. 2013, 87, 1−16

Pair Feature Pair Feature

Pair Feature Environment Feature



ℎ#,$* = ℎ#,$*,-⊗∑+∈&(#)𝑤#,+* 𝑌 #,+

Density Trick1 removes exponential scaling

𝑘*

𝑗

𝑖

𝑘+

[1] Bartók, el al: On representing chemical environments. Phys. Rev. B: Condens. Matter Mater. Phys. 2013, 87, 1−16

Pair Feature Environment Feature

We exploit the bilinearity of the tensor product

This gives linear scaling with the correlation order! 



51

The full Tensor Product Layer



The full Allegro model



Allegro obtains state-of-the-art accuracy on revMD-17

53



54

Allegro obtains state-of-the-art accuracy on revMD-17
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Allegro obtains state-of-the-art accuracy on revMD-17
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Learning across compositional space, QM9

1 layer



Figure from: Kovacs et al., 2021, JCTC

Beyond accuracy: benchmarking the transferability of Allegro

T = 300K

T = 600K

T = 1200K

Train

Test

Test

Temperature Transferability



58
Numbers for models besides NequIP and Allegro are from [1] Kovacs et al., 2021, JCTC

Allegro shows strong OOD-generalization

Allegro/NequIP models trained on 500 structures
ANI models, pretrained on 8.9 million structures



Allegro predicts the structures + kinetics of complex materials

Li3PO4, quenched at T=600K
Top: tetrahedral ADF
Bottom: Li MSD



Allegro: speed

32.4 ns/day on a DFT sized system
(192 atoms)



Allegro’s accuracy scales…

• 𝑶 𝑵 in the number of atoms
contrast: 𝑂(𝑁-) global descriptors such as sGDML1

• 𝑶 𝑴 in the number of neighbors/atom
contrast: some 𝑂(𝑀-) deep learning approaches such as DimeNet2 or Equivariant 
Transformers3

• 𝑶(𝟏) in the number of chemical species
contrast: local descriptors like SOAP — 𝑂 𝑆- — and ACE4: 𝑂(𝑆./01 /2032 4 5)

[1] Chmiela, S., Sauceda, H. E., Muller, K.-R. & Tkatchenko, A. Towards exact molecular dynamics simulations with machine-learned force fields. Nature Communications 9, 3887 (2018).

[2] Klicpera, J., Groß, J. & Gunnemann, S. Directional message passing for molecular graphs. arXiv preprint arXiv:2003.03123 (2020).

[3] Tholke, P. & De Fabritiis, G. Torchmd-net: Equivariant transformers for neural network based molecular potentials. arXiv preprint arXiv:2202.02541 (2022).

[4] Drautz, R. Atomic cluster expansion for accurate and transferable interatomic potentials. Physical Review B 99, 014104 (2019).



Allegro can practically scale…

…for a fixed system size



Allegro: strong scaling on 421,824 atoms

Simulations run in LAMMPS on NVIDIA  A100 GPUs;  8 GPUs / node.  Timestep: 2fs.

intra-node inter-node

~16 ns/day
6,591 atoms/GPU
0.018 µs/atom/step

Anders Johansson



Allegro can practically scale…

…to extremely large systems



on

16x8 A100
GPUs

100,000,000
atoms

1.5 ns/day



integration with

100,000,000
atoms

1.5 ns/day



Neural Equivariant Interatomic Potentials
github.com/mir-group/nequip
github.com/mir-group/allegro

• Modular open-source framework for designing, training, testing, and 
deploying equivariant MLIPs

• Allegro is implemented as an extension package

• Optimized for GPUs with PyTorch

• Full TorchScript support for Python-free deployment, 
including to our LAMMPS plugin pair_allegro Allegro

NequIP



Transferability

Accuracy

Computational Efficiency

Scale:  Yes
Speed: Not quite… (Allegro: 32.4 ns/day)

Sample Efficiency

Is our community there yet? 

Theory
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