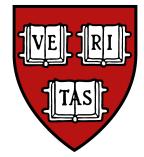
# Life after Message Passing: Local Equivariant Interatomic Potentials

Preprint: arxiv.org/abs/2204.05249

Albert Musaelian and Simon Batzner

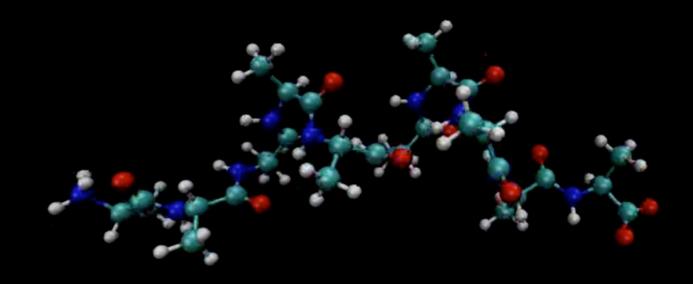
Kozinsky Lab



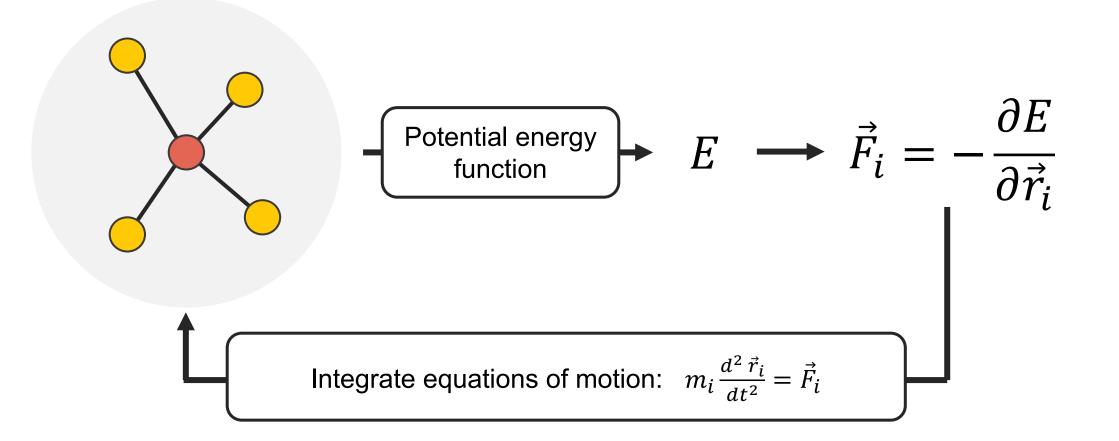
$$m_i \frac{d^2 \vec{r_i}}{dt^2} = \vec{F_i}(\vec{r_1}, \dots, \vec{r_N}) = -\frac{\partial E(\vec{r_1}, \dots, \vec{r_N})}{\partial \vec{r_i}}$$

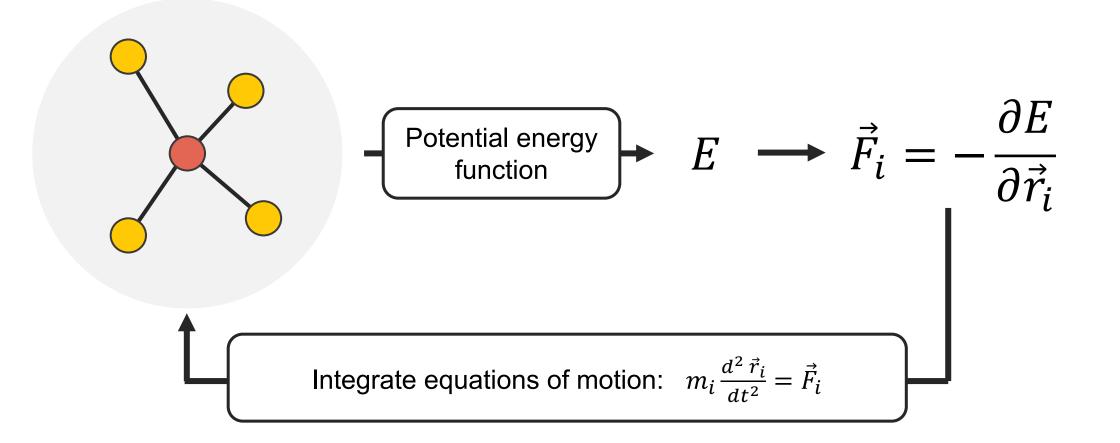
NequIP, Kozinsky group, LiPS

# FLARE, Kozinsky group, H/Pt(111)

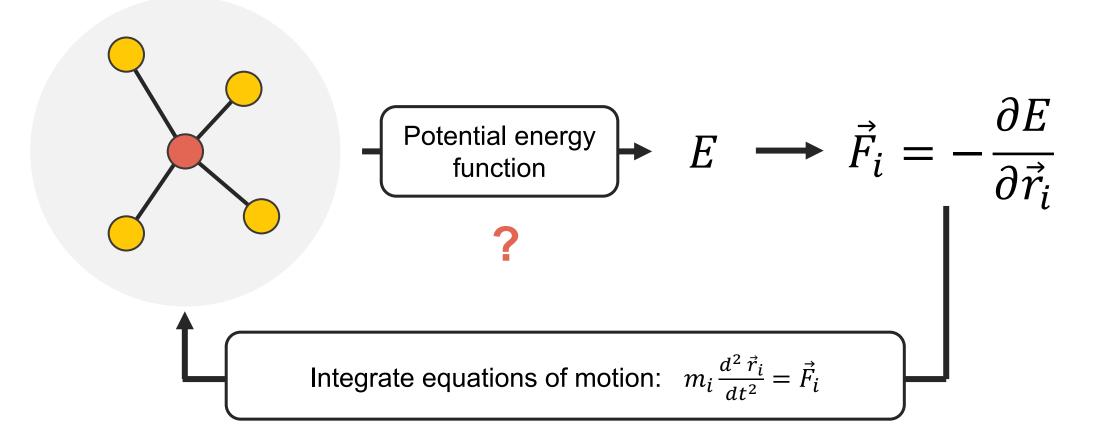


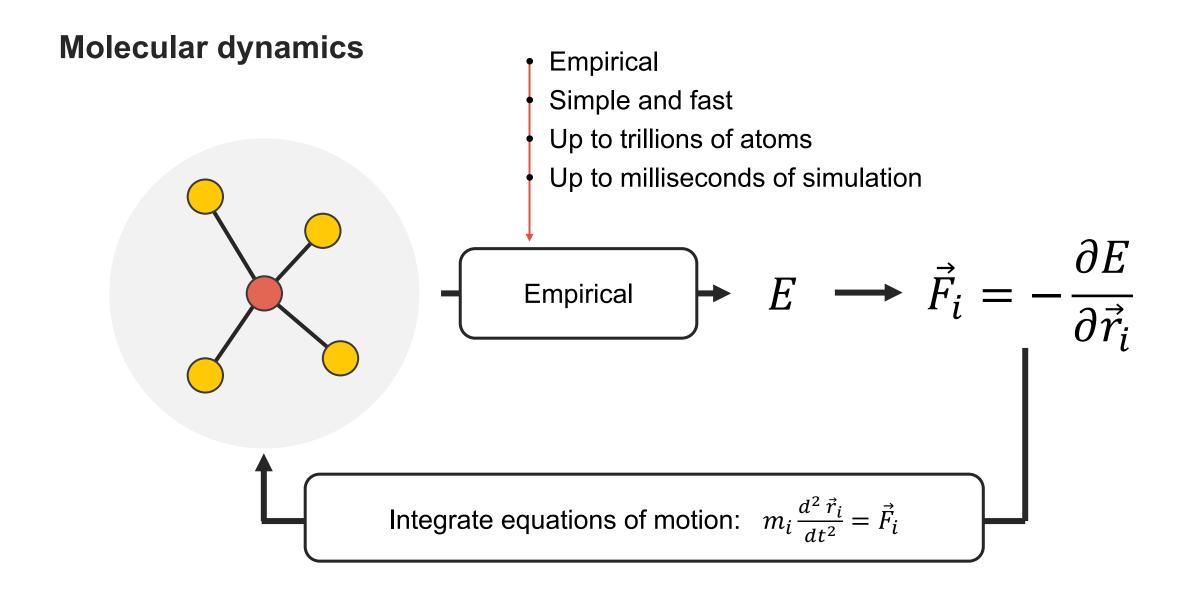
# NequIP, Kozinsky group, Deca-Alanine



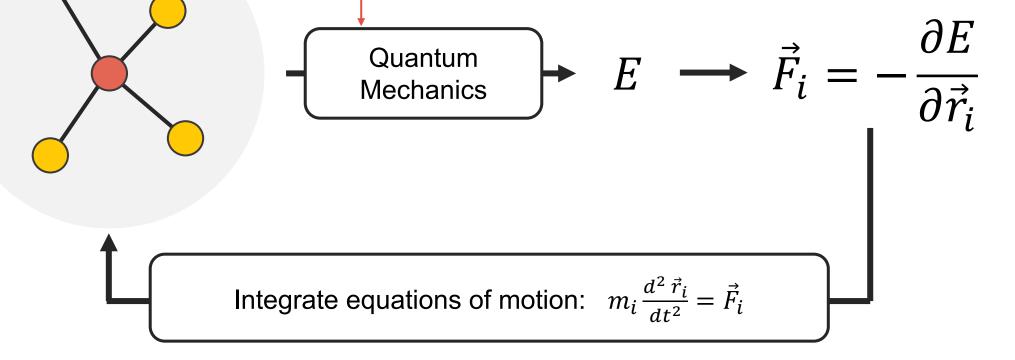


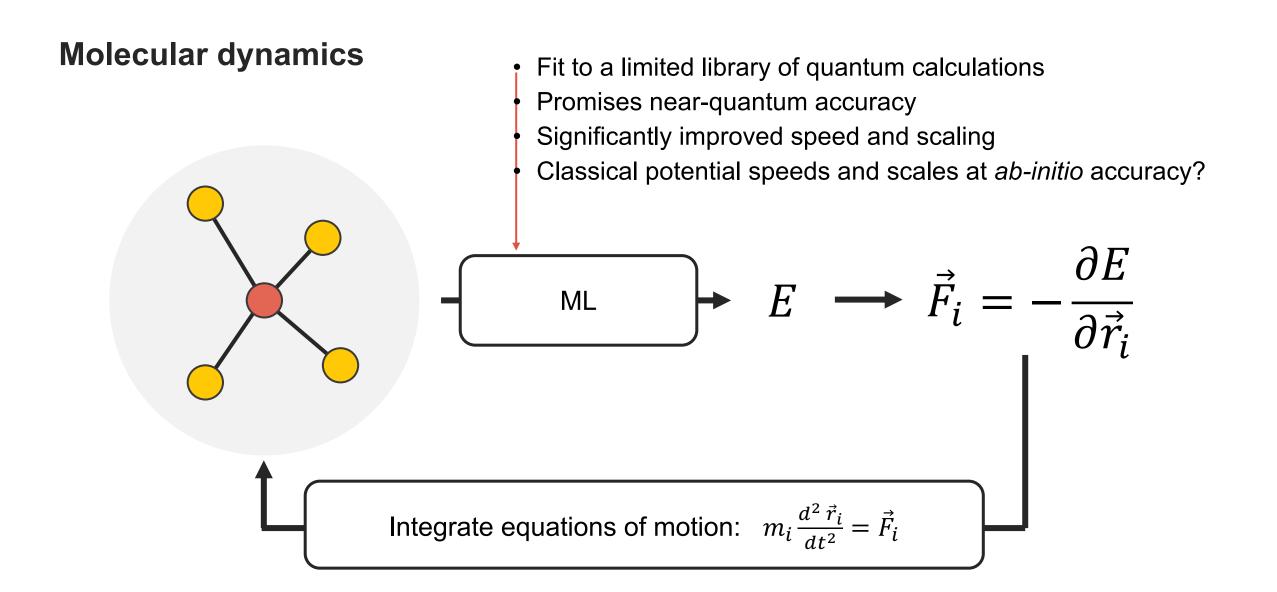
# Challenge: Have to integrate billions to trillions of times

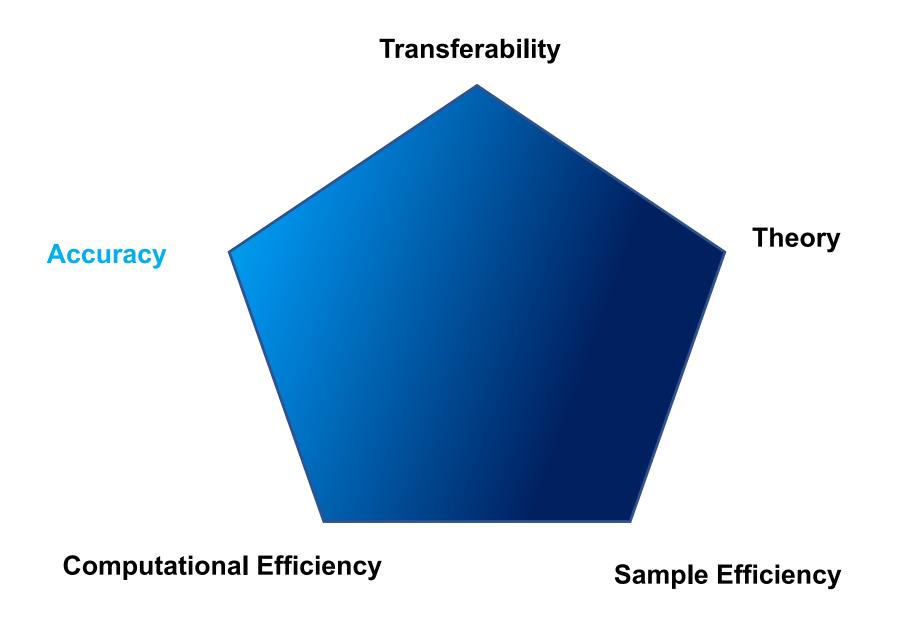


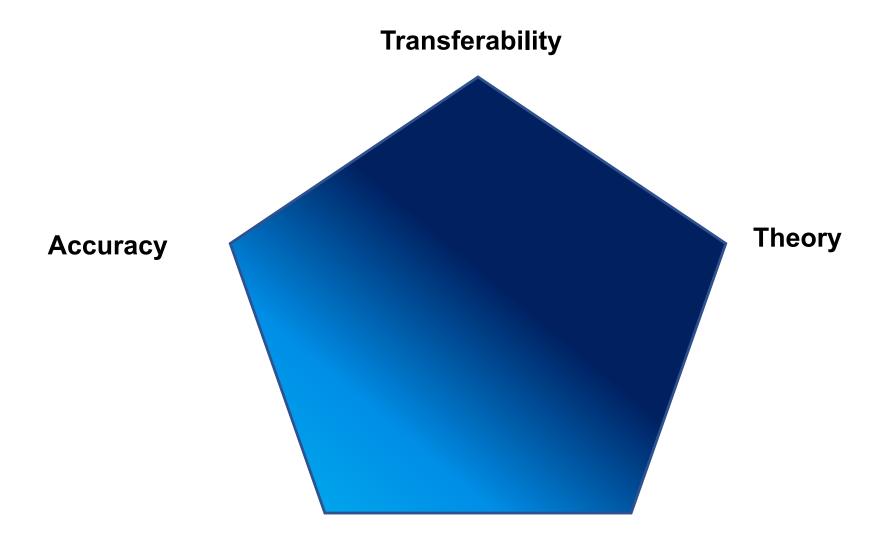


- From first principles
- Often good agreement with experiment without fitting
- Very expensive and prohibitive scaling
- Limited to hundreds of atoms and 100s ps of simulations

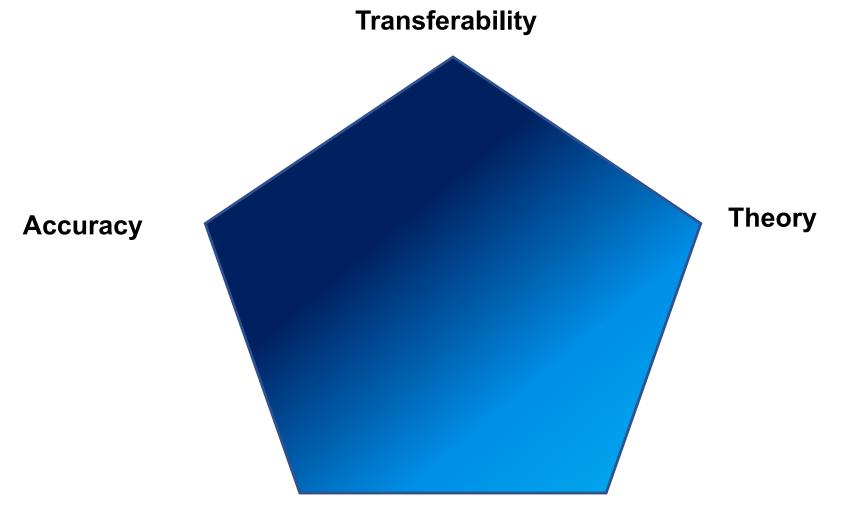




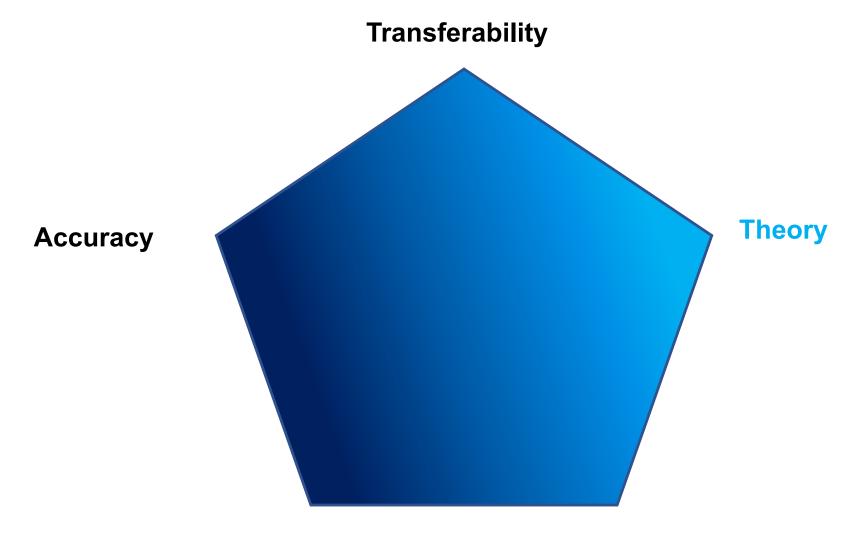




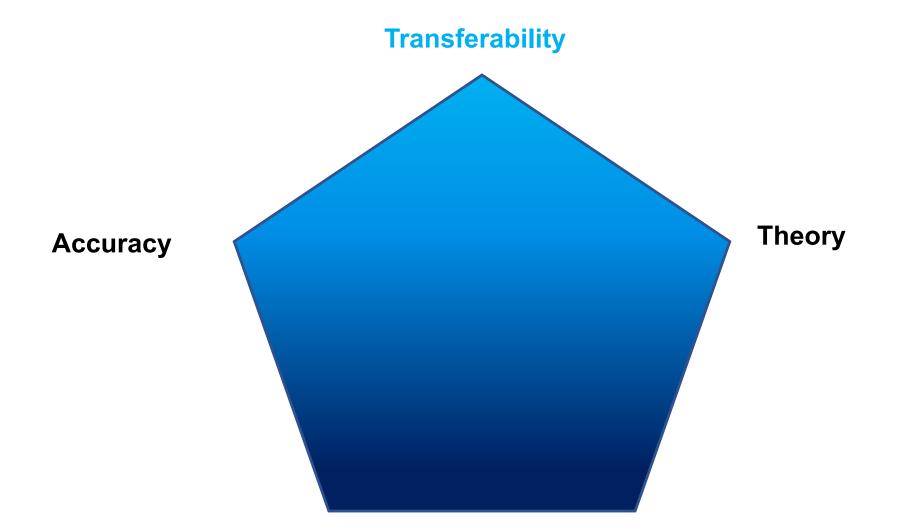
**Computational Efficiency** 



**Computational Efficiency** 



**Computational Efficiency** 



**Computational Efficiency** 

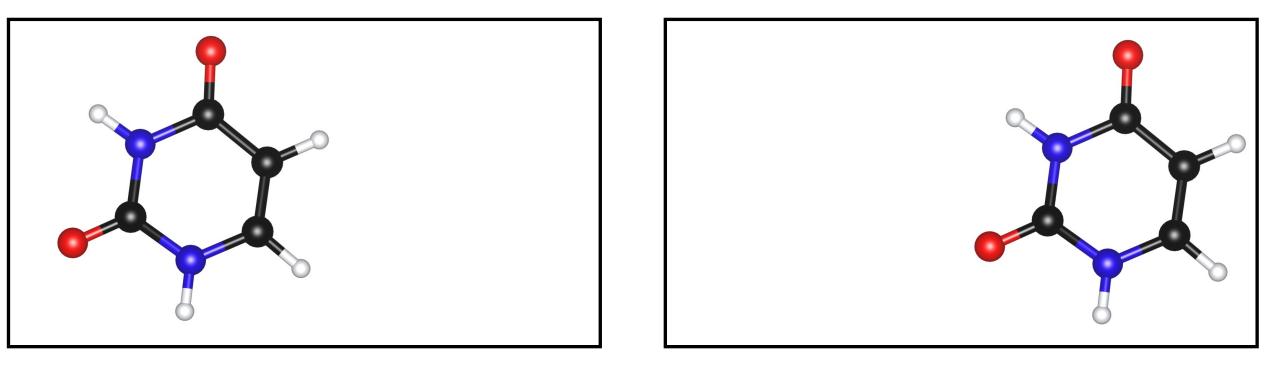
# How to represent atomistic systems?

-260120.41022582943 1.63438356 0.29588831 -0.06029892( 1.44408771 - 1.03792413 0.04112652С Ν 0.15607651 - 1.58651275 0.11493441С -1.00154586 -0.75181433 0.08175814Ν -0.81072938 0.645473 -0.02477061 С 0.49544837 1.21779532 -0.110494060 -2.11299038 - 1.2549146 0.149273070 0.54437819 2.43752091 -0.19898519 Н 2.28646928 -1.74881243 0.07996217 Н 0.04292334 - 2.59002107 0.16531753Η -1.62925491 1.21958722 -0.04033683Н 2.64457191 0.71408144 -0.09981888

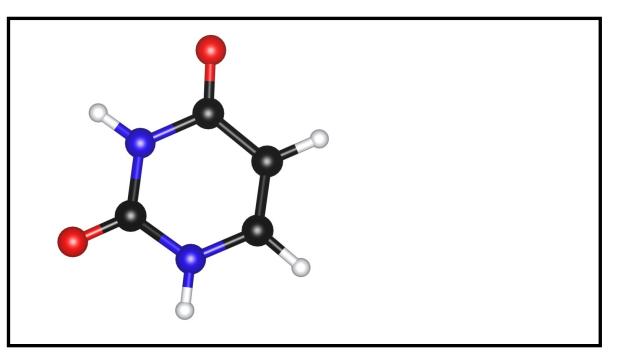
12

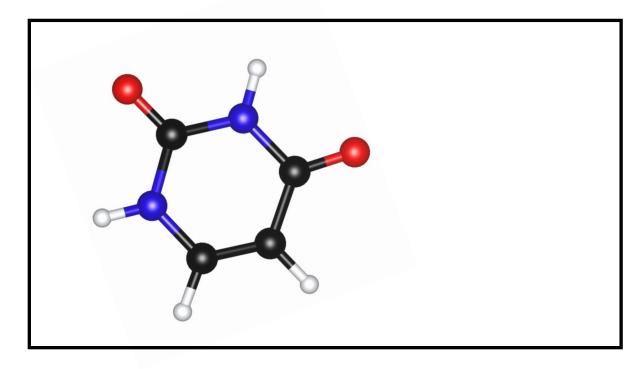


# 1. Translations

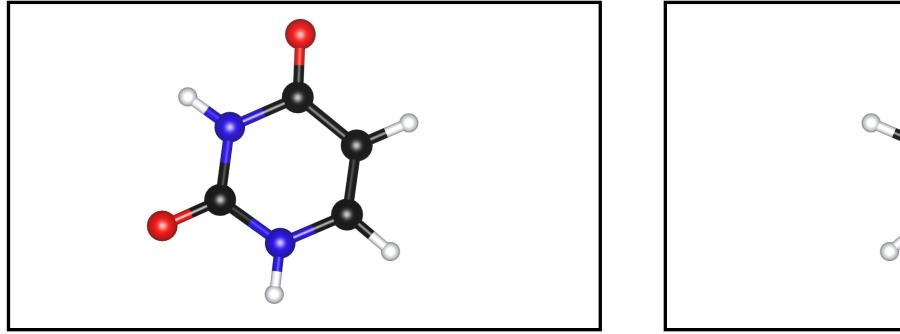


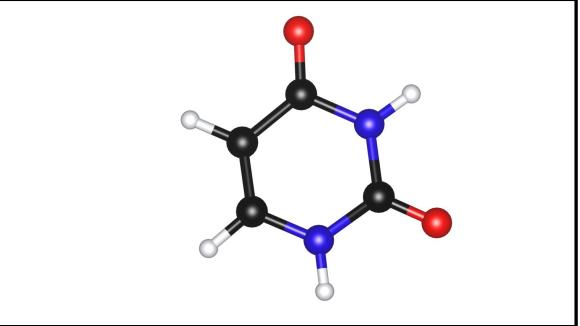
# 2. Rotations



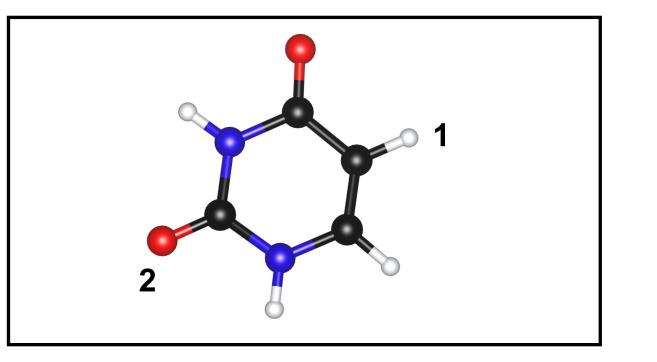


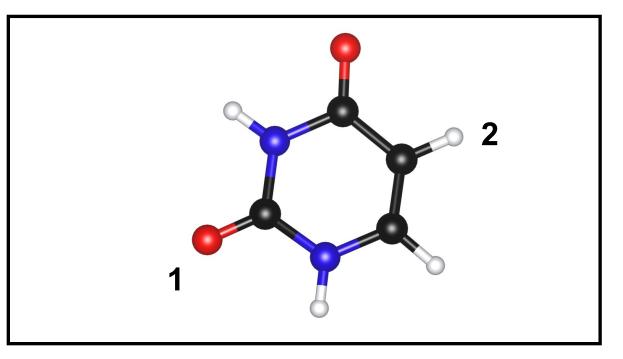
# 3. Reflections

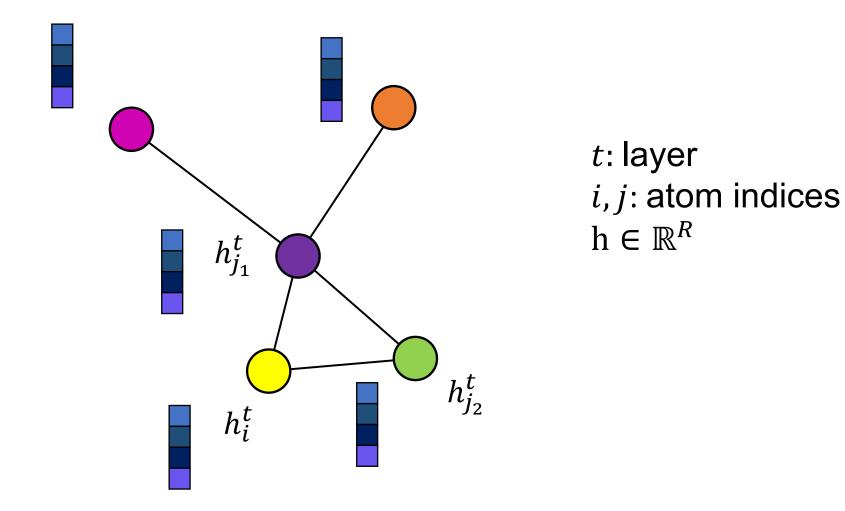


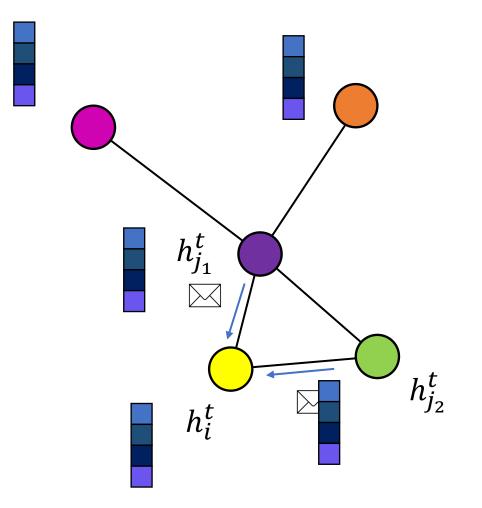


# 4. Permutation of atom indexing

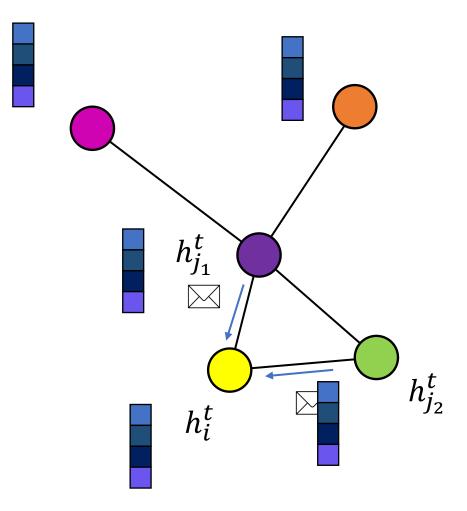




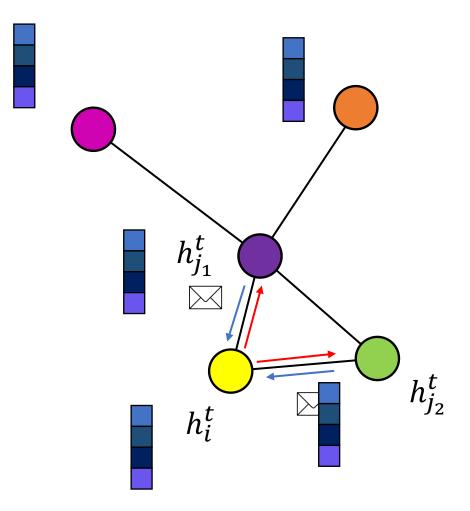




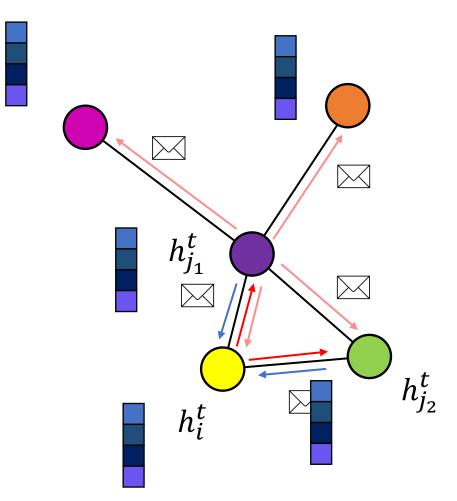
$$m_i^{t+1} = \sum_{j \in N(i)} M_t(h_i^t, h_j^t, e_{ij})$$



$$m_{i}^{t+1} = \sum_{j \in N(i)} M_{t} (h_{i}^{t}, h_{j}^{t}, e_{ij})$$
$$h_{i}^{t+1} = U_{t} (h_{i}^{t}, m_{i}^{t+1})$$



$$m_{i}^{t+1} = \sum_{j \in N(i)} M_{t} (h_{i}^{t}, h_{j}^{t}, e_{ij})$$
$$h_{i}^{t+1} = U_{t} (h_{i}^{t}, m_{i}^{t+1})$$



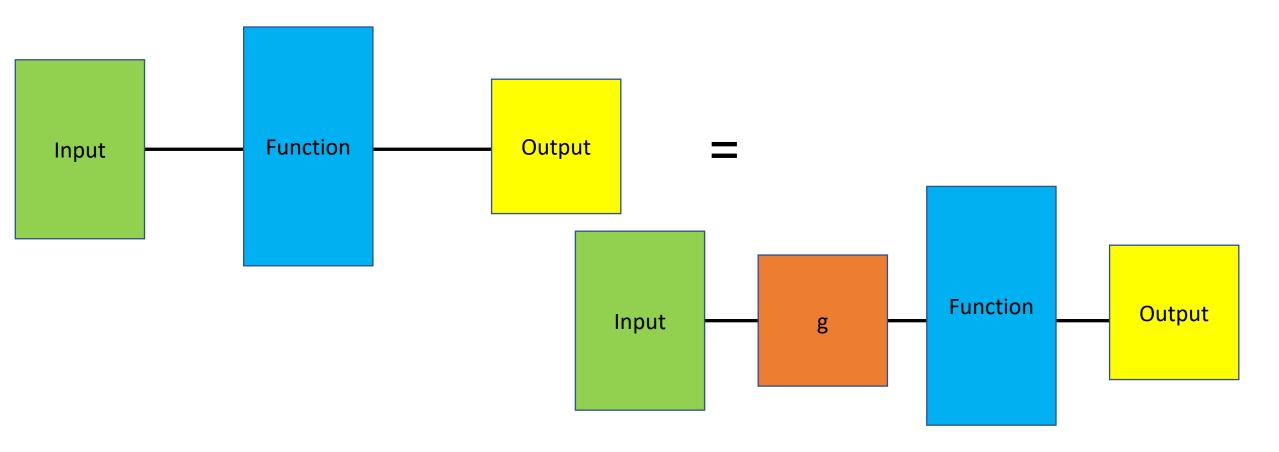
$$m_{i}^{t+1} = \sum_{j \in N(i)} M_{t} (h_{i}^{t}, h_{j}^{t}, e_{ij})$$
$$h_{i}^{t+1} = U_{t} (h_{i}^{t}, m_{i}^{t+1})$$

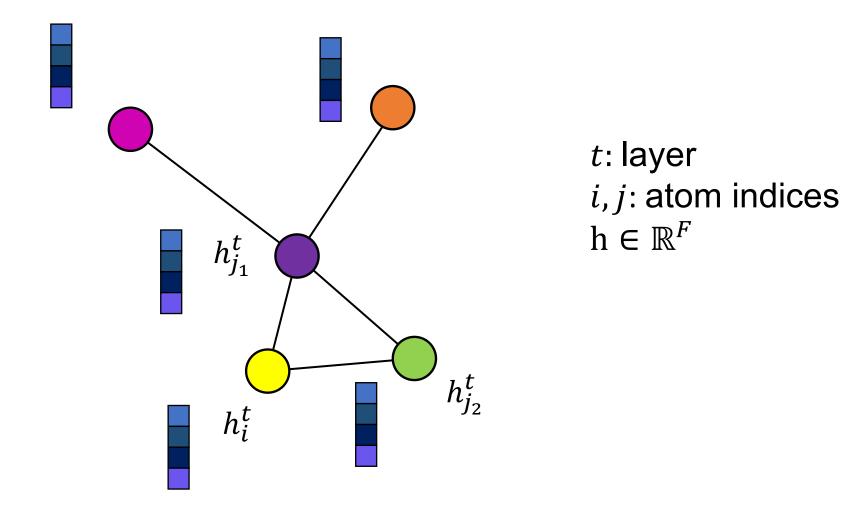
#### Existing Message Passing Neural Networks (SchNet, DimeNet, PhysNet, ...) are invariant to E(3)

#### Invariance

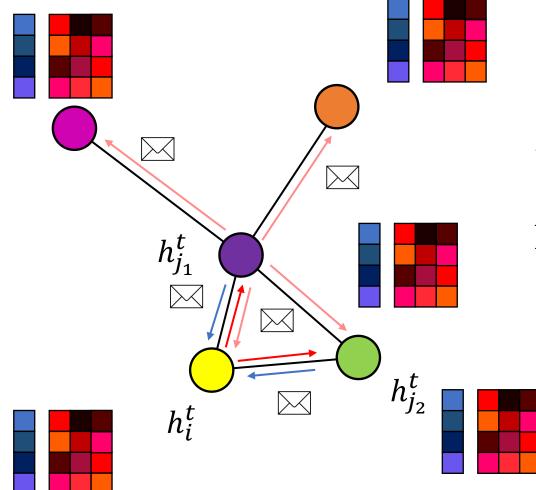
 $f: X \to Y$  is said to be **invariant** w.r.t. the action of the group G, if  $\forall g \in G$  and  $\forall x \in X$ :

 $f(D_X(g)x) = If(x)$ 





# **Equivariant Message Passing Neural Networks [1, 2, 3]**



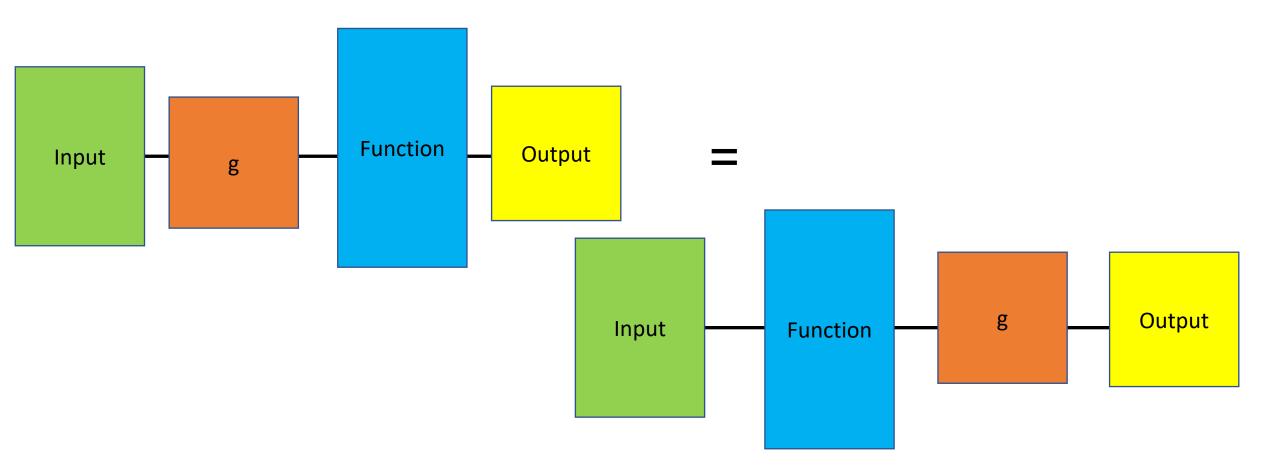
*t*: layer *i*, *j*: atom indices  $h \in \mathbb{R}^{c} \bigoplus \mathbb{R}^{c \times 3} \bigoplus \cdots$ 

[1] Thomas, N., Smidt, T., et al. arXiv preprint arXiv:1802.08219.
[2] Weiler, M., Geiger, M., et al. Advances in Neural Information Processing Systems, 31
[3] Kondor, R., Lin, Z., & Trivedi, S. (2018Advances in Neural Information Processing Systems, 31.

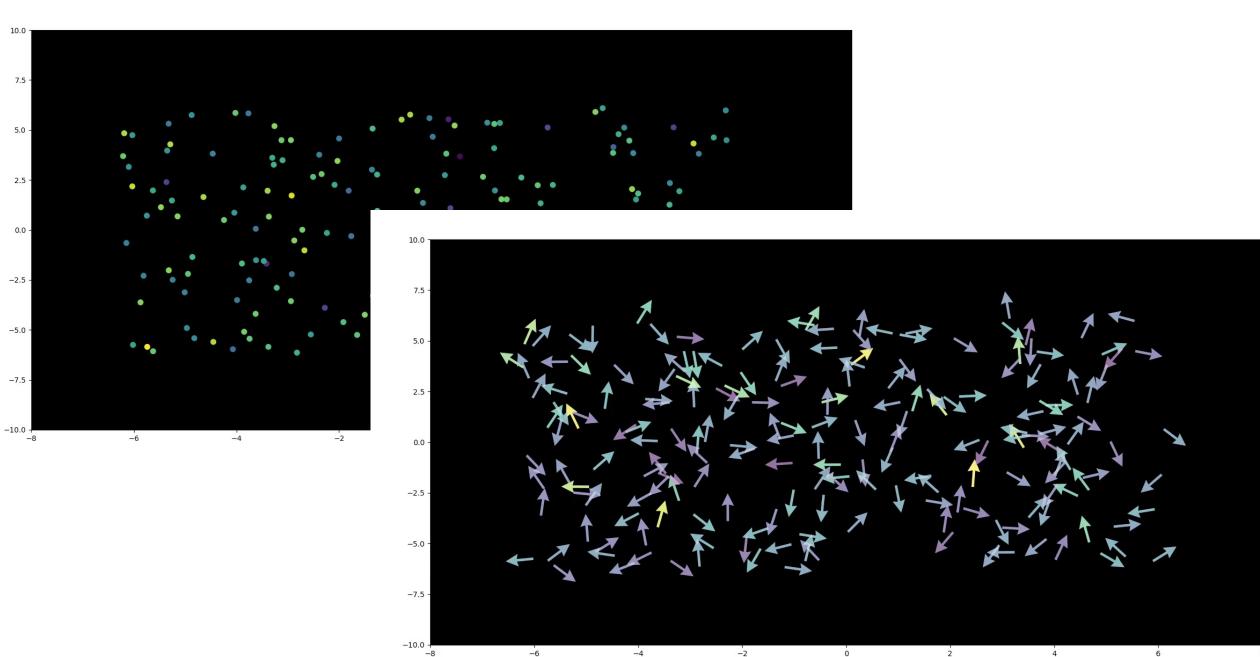
# Equivariance

 $f: X \to Y$  is said to be **equivariant** w.r.t. the action of the group G, if  $\forall g \in G$  and  $\forall x \in X$ :

 $f(D_X(g)x) = D_Y(g)f(x)$ 



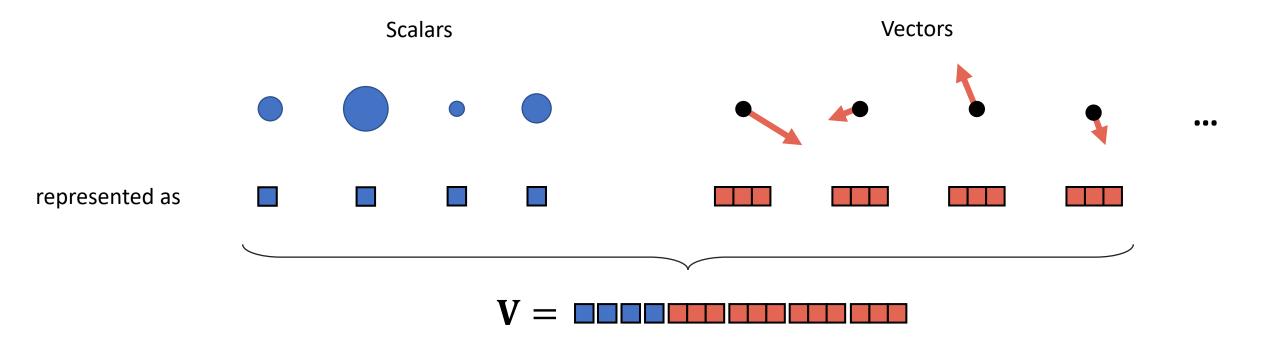
### **Tensor Features transform with the geometry under E(3) group actions**



## **Equivariance: tensor features**

The inputs, internal features, and outputs of the model are

<u>collections</u> of individual <u>geometric tensors</u> that transform variously under O(3)



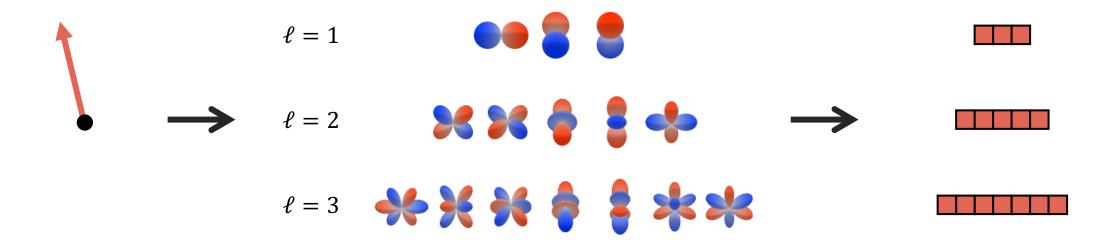
# **Equivariance: tensor features**

- Formally, each tensor inhabits an irreducible representation (irrep) of 0(3)
- The irreps are indexed by:
  - Rotation order  $\ell \ge 0$ :
    - $\ell = 0$ : scalar
    - $\ell = 1$ : vector
    - $\ell \ge 2$ : tensor

- Parity  $p = \pm 1$ :
  - p = 1: invariant under inversion
  - p = -1: changes sign under inversion
- A tensor of order  $\ell$  has dimension  $2\ell + 1$

Equivariance: tensor features from spherical harmonics

- How can we encode data in these tensors?
- Spherical harmonics  $Y_{\ell}^{m}$  are a basis for functions on the sphere
- They decompose functions into tensors of various  $\ell$  and  $p = (-1)^{\ell}$



# **Equivariance: tensor features**

• An entire feature array

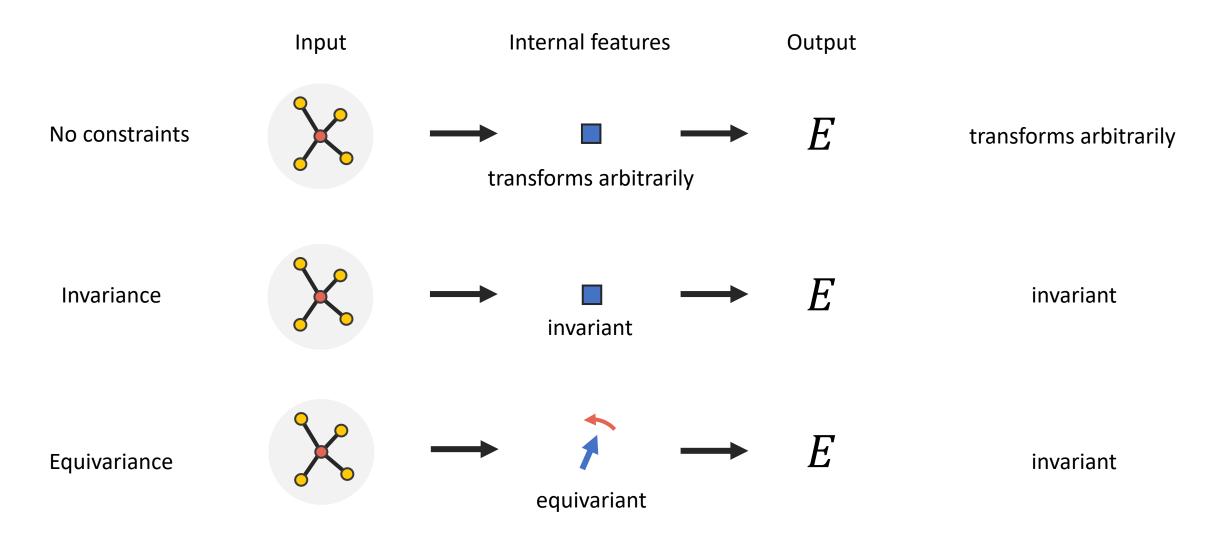
inhabits a direct sum of irreps

$$(\ell = 0, p = 1) \oplus (\ell = 1, p = -1) \oplus (\ell = 2, p = 1)$$

Very general:

- Any physical quantity transforms with a representation of O(3)
- Any representation of O(3) decomposes into such a direct sum of irreps

# No constraints, invariance, equivariance



**Tensor product** 

• A bilinear, equivariant operation combining two tensors

$$(\mathbf{x} \otimes \mathbf{y})_{\ell_{\text{out}},m_{\text{out}}} = \sum_{m_1,m_2} \begin{pmatrix} \ell_1 & \ell_2 & \ell_{\text{out}} \\ m_1 & m_2 & m_{\text{out}} \end{pmatrix} \mathbf{x}_{\ell_1,m_1} \mathbf{y}_{\ell_2,m_2}$$
  
Wigner 3j coefficients

- The Wigner 3j are a change of basis from the product back into irreps
- Can produce any  $|\ell_1 \ell_2| \le \ell_{out} \le |\ell_1 + \ell_2|$  and  $p_{out} = p_1 p_2$

#### **Tensor product: examples**

Scalar multiplication:

$$(\ell = 0, p = 1) \otimes (\ell = 0, p = 1) \rightarrow (\ell = 0, p = 1)$$

Vector-vector dot product:

$$(\ell = 1, p = -1) \otimes (\ell = 1, p = -1) \rightarrow (\ell = 0, p = 1)$$

Vector-vector cross product:

$$(\ell = 1, p = -1)^{\otimes}$$
  $(\ell = 1, p = -1)^{\rightarrow}$   $(\ell = 1, p = 1)$ 

#### **Equivariance dramatically improves MLIPs**

- Examples: NequIP [0], PaiNN [1], UNITE [2], EGNN [3], etc.
- All existing equivariant neural network MLIPs are message-passing

[0] Batzner et al. "SE(3)-Equivariant Graph Neural Networks for Data-Efficient and Accurate Interatomic Potentials"

[1] K.T. Schutt, O.T. Unke, M. Gastegger. "Equivariant message passing for the prediction of tensorial properties and molecular spectra"

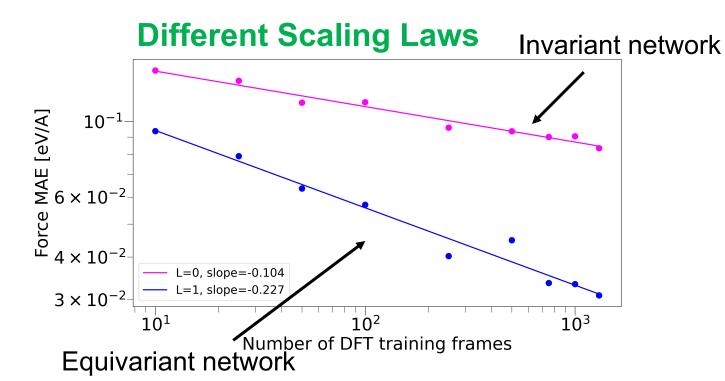
[2] Z. Qiao, A.S. Chirstensen, M. Welborn, F.R. Manby, A. Anandkumar, T.F. Miller III. "UNITE: Unitary N-body Tensor Equivariant Network with Applications to Quantum Chemistry"

[3] V.G. Satorras, E. Hoogeboom, M. Welling. "E(n) Equivariant Graph Neural Networks"

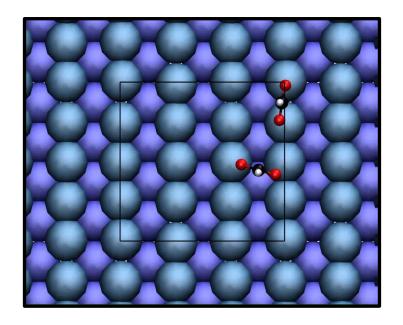
#### NequIP demonstrated that equivariance leads fundamentally better molecular ML!

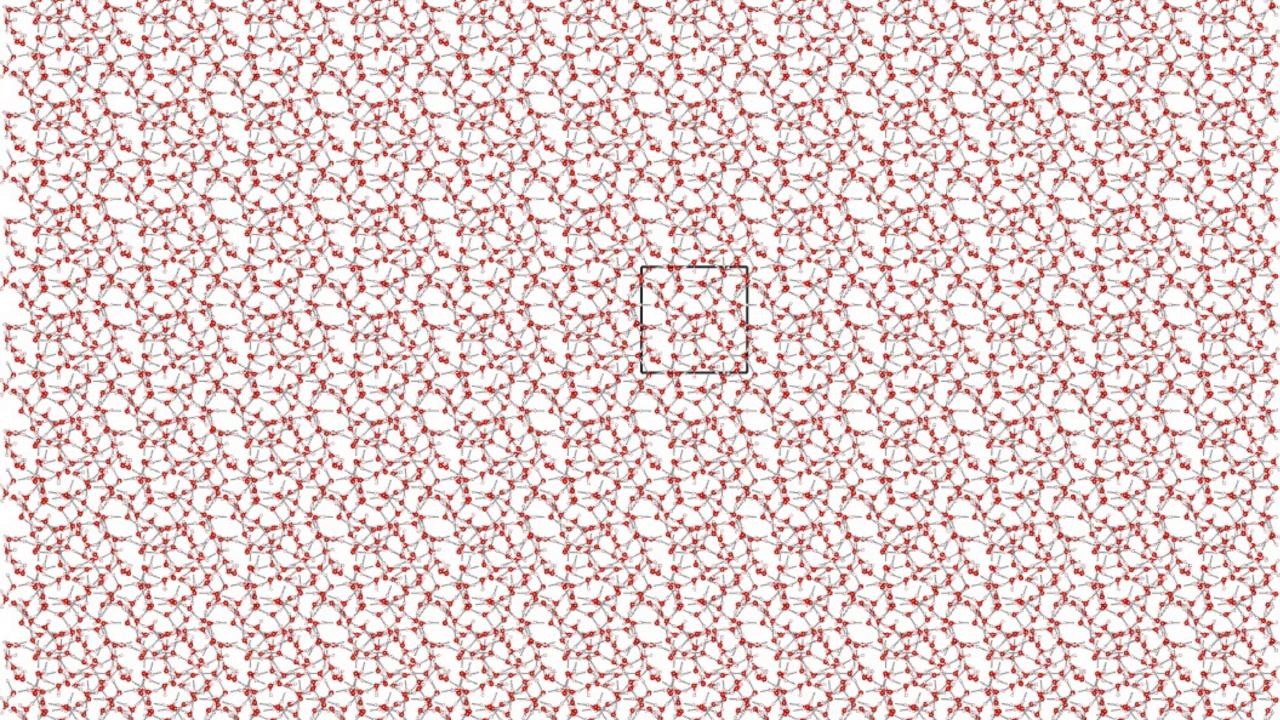
#### **1000x fewer data**

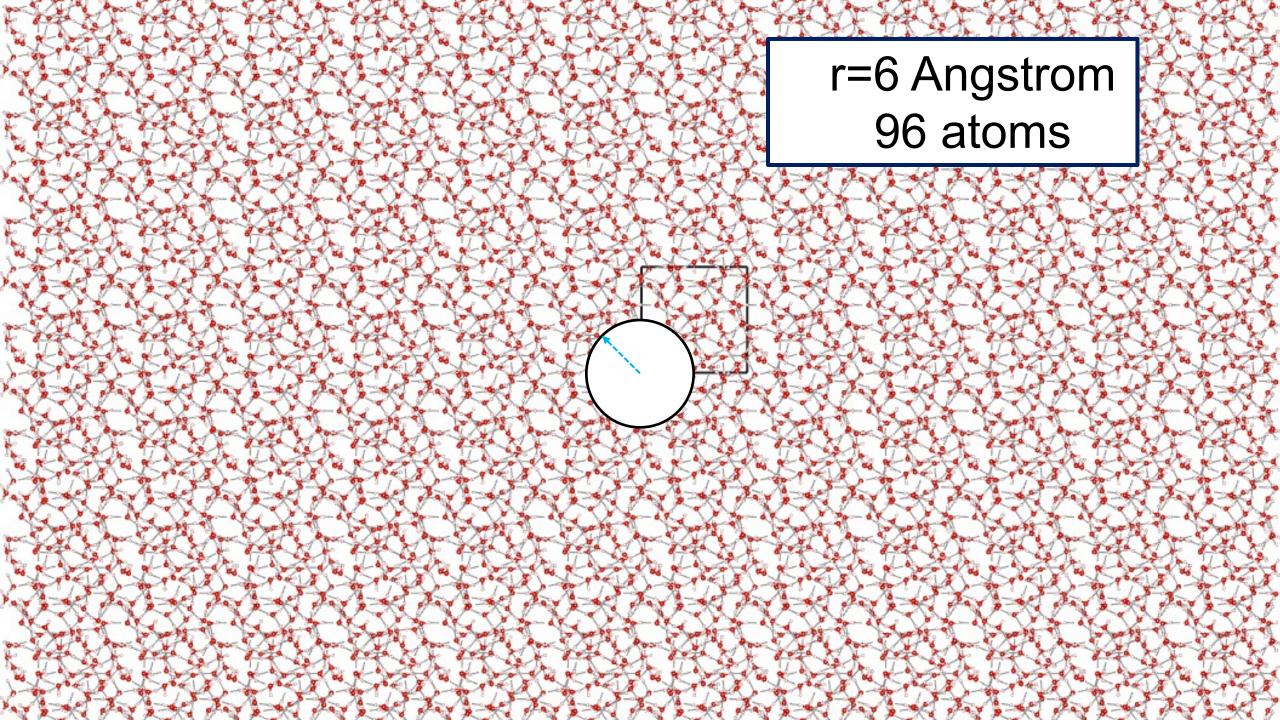
| System       | NequIP, trained on 133 structures | DeepMD, trained on 133,500 structures |
|--------------|-----------------------------------|---------------------------------------|
| Liquid Water | 11.9                              | 40.4                                  |
| Ice Ih (b)   | 10.2                              | 43.3                                  |
| Ice Ih $(c)$ | 12.0                              | 26.8                                  |
| Ice Ih (d)   | 9.8                               | 25.4                                  |

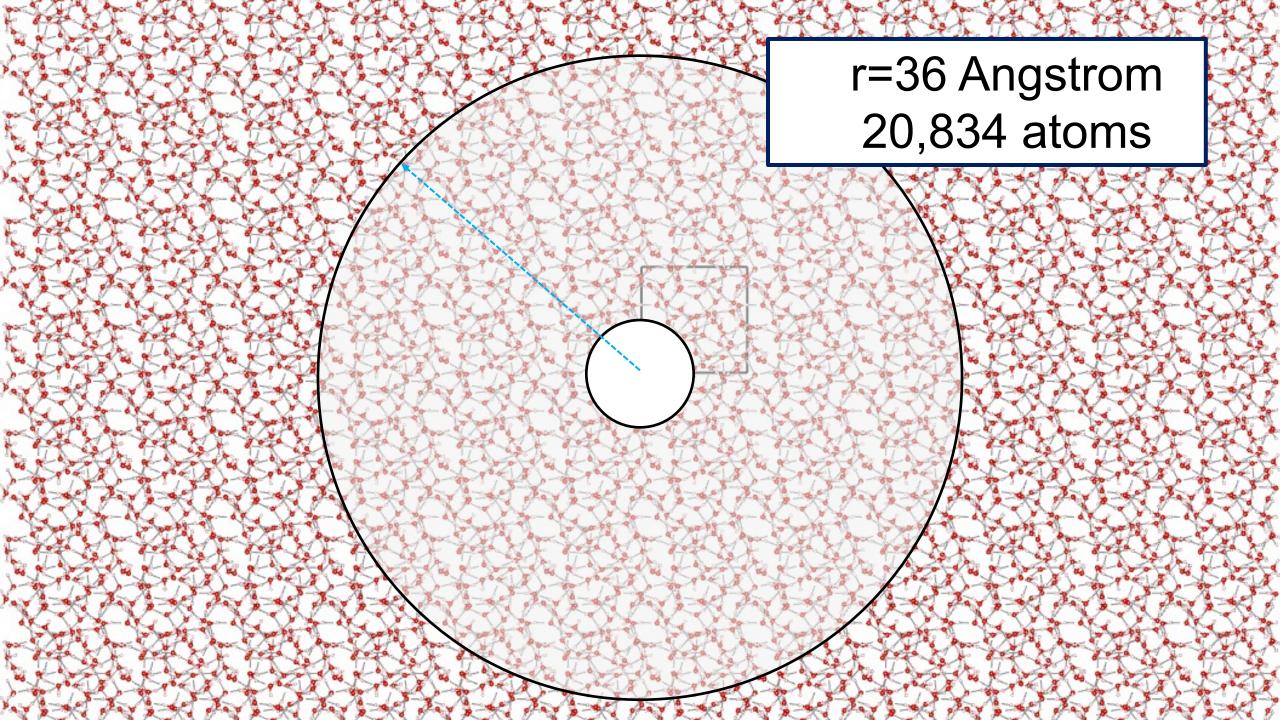


#### **Complex, reactive systems**







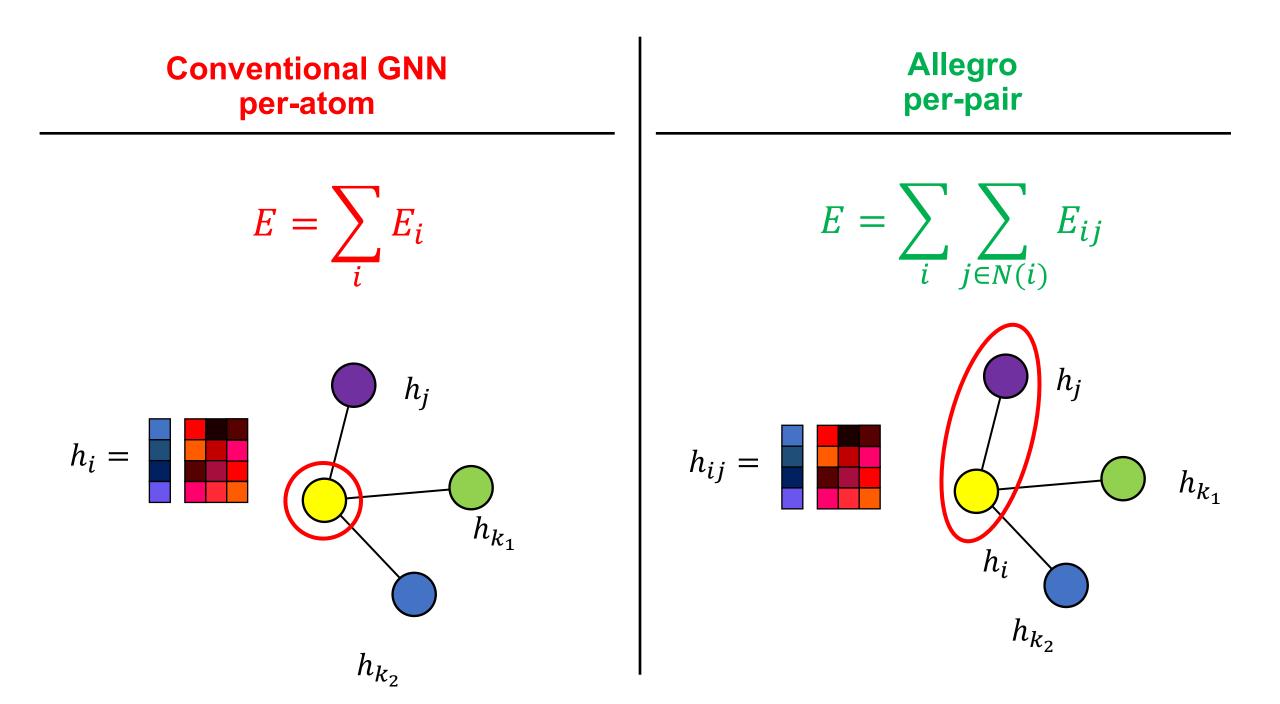




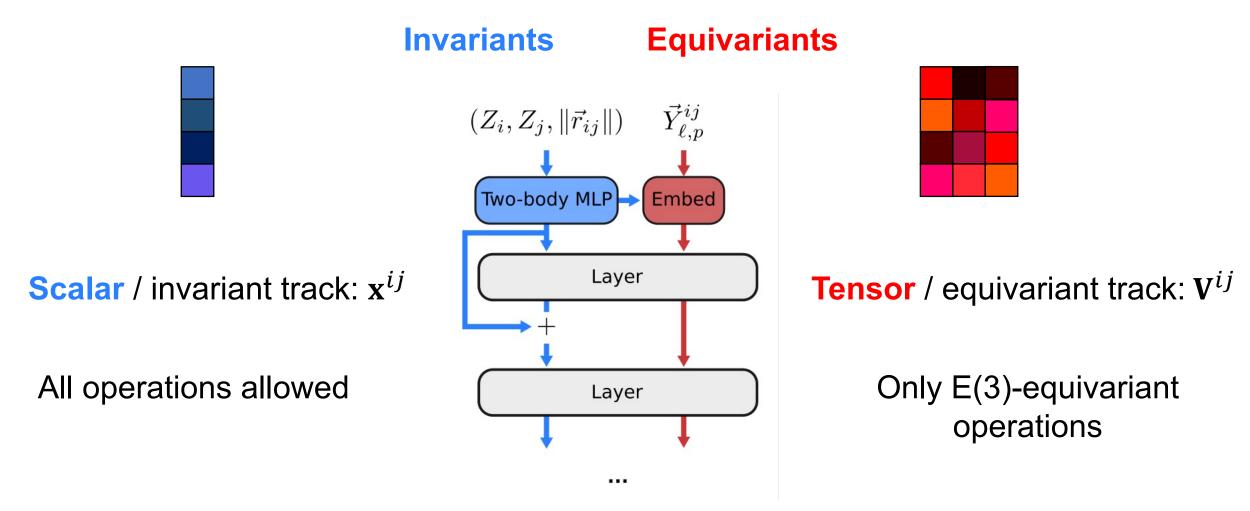


### **Message Passing**





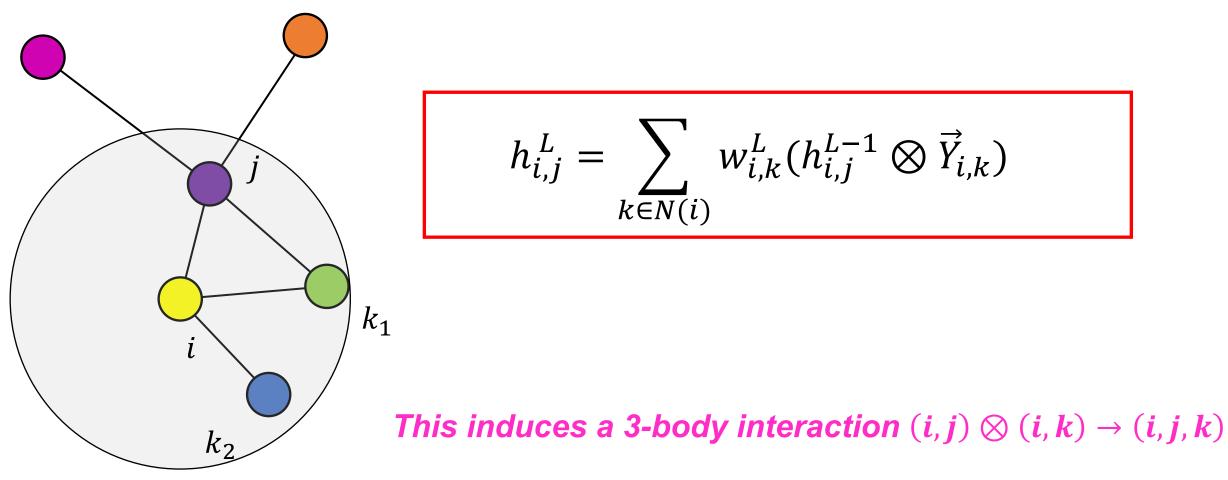
#### **The Two-Track Architecture**



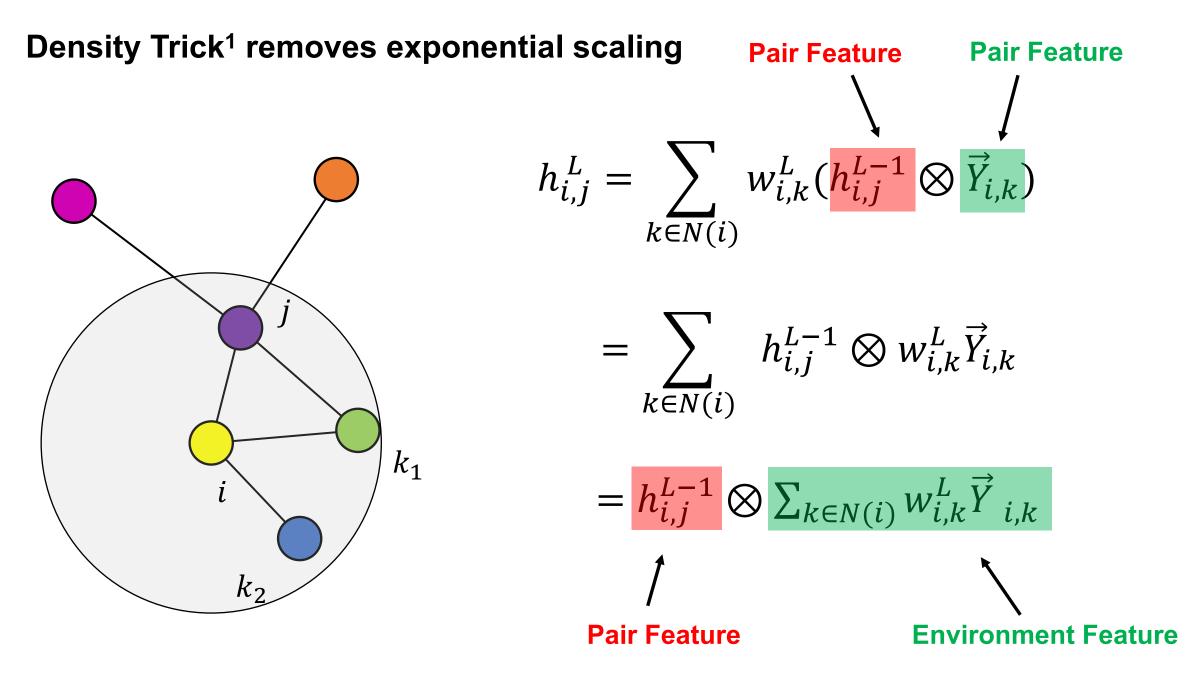
Reasoning: scalars are cheap, tensors are expensive

Let large set of scalars control a small set of tensor operations!

#### Iterated tensor product increases correlation order

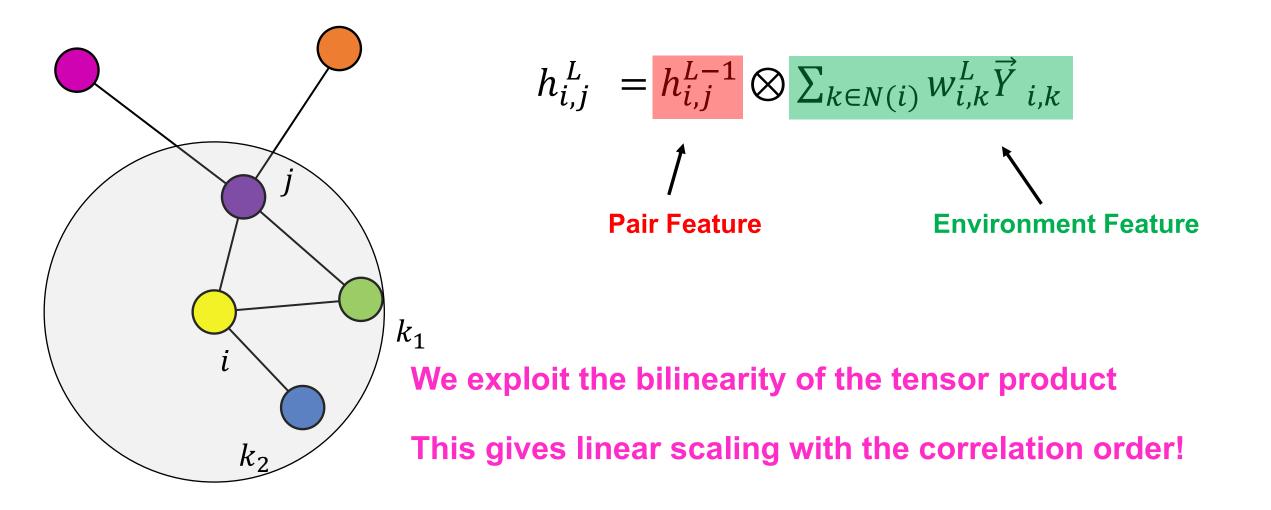


Naively, this gives exponential scaling!



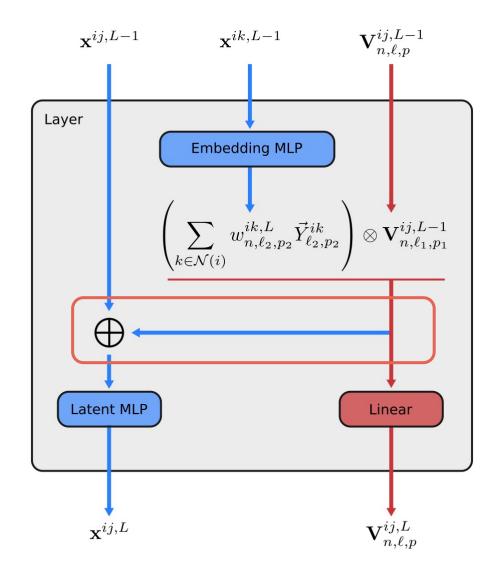
[1] Bartók, el al: On representing chemical environments. Phys. Rev. B: Condens. Matter Mater. Phys. 2013, 87, 1–16

#### **Density Trick<sup>1</sup> removes exponential scaling**

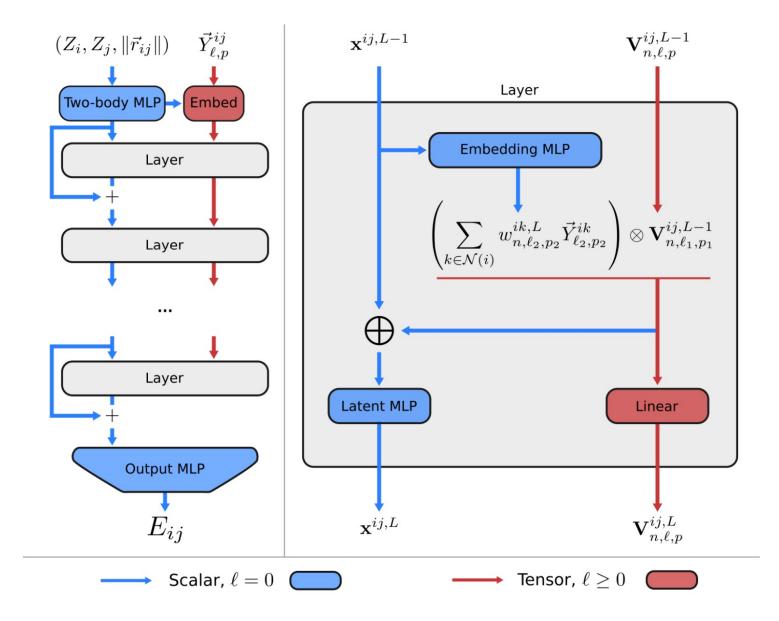


[1] Bartók, el al: On representing chemical environments. Phys. Rev. B: Condens. Matter Mater. Phys. 2013, 87, 1–16

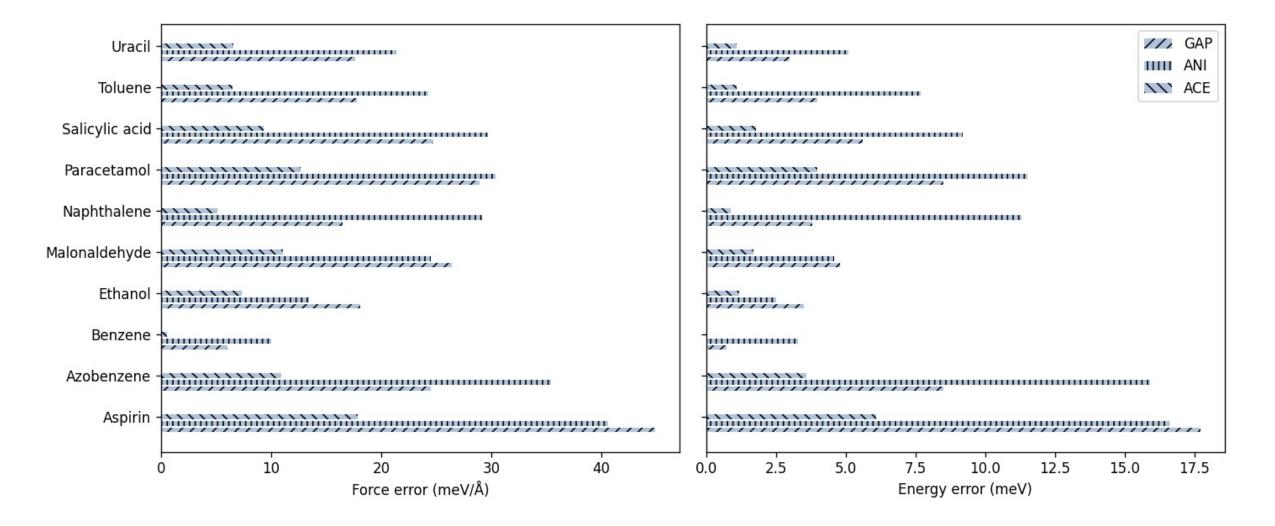
#### **The full Tensor Product Layer**



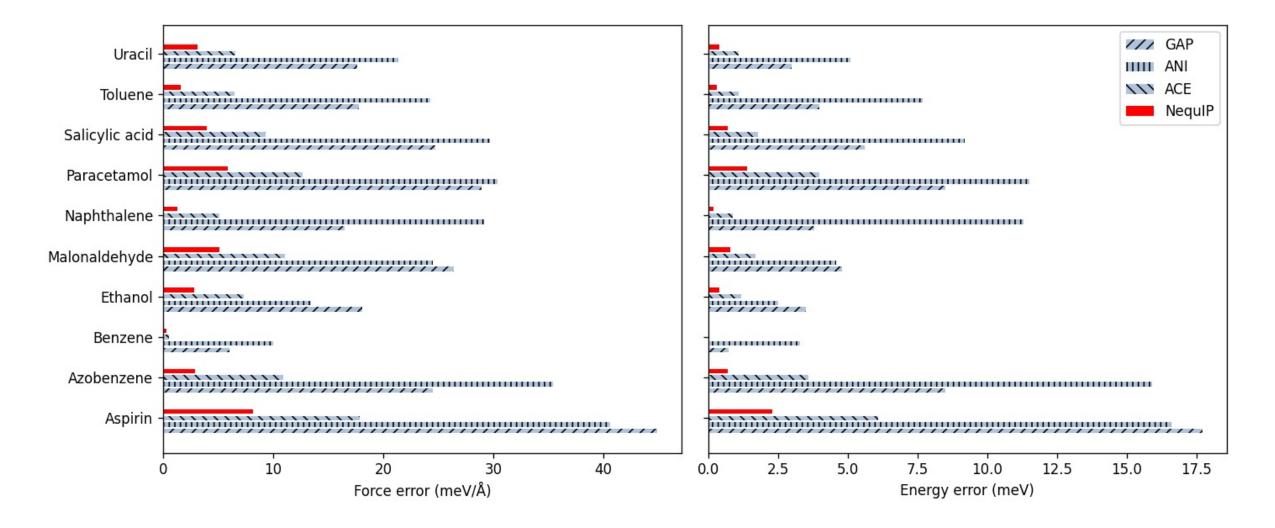
#### The full Allegro model



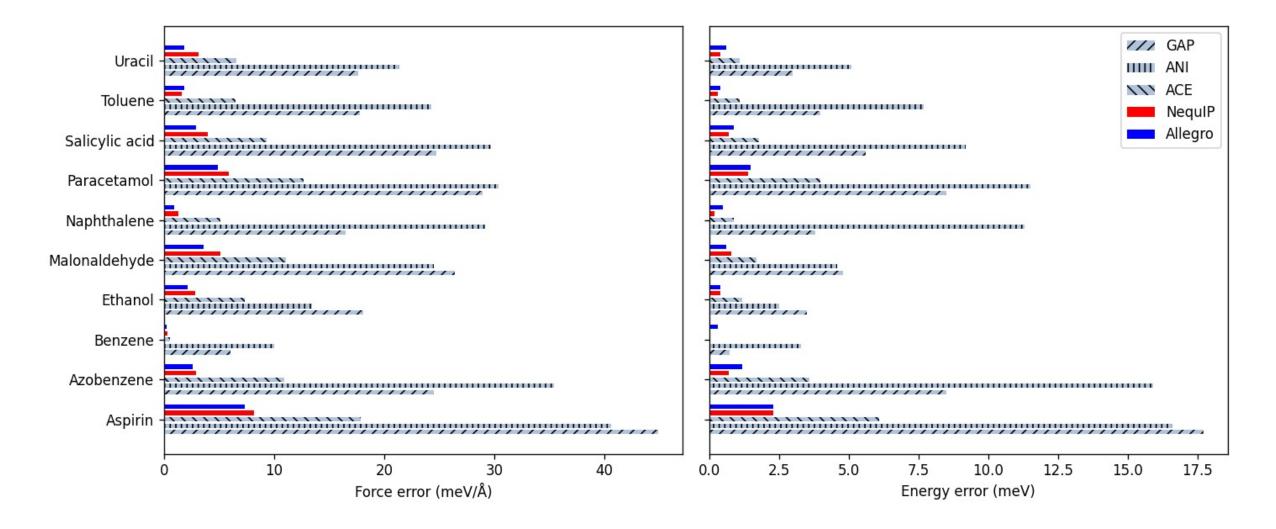
#### Allegro obtains state-of-the-art accuracy on revMD-17



#### Allegro obtains state-of-the-art accuracy on revMD-17



#### Allegro obtains state-of-the-art accuracy on revMD-17



#### Learning across compositional space, QM9

1 layer

| Model              | $U_0$     | U                 | H    | G                 |
|--------------------|-----------|-------------------|------|-------------------|
| Schnet [25]        | 14        | 19                | 14   | 14                |
| DimeNet++ [54]     | 6.3       | 6.3               | 6.5  | 7.6               |
| Cormorant [23]     | 22        | 21                | 21   | 20                |
| LieConv [55]       | 19        | 19                | 24   | 22                |
| L1Net [56]         | 13.5      | 13.8              | 14.4 | 14.0              |
| SphereNet $[57]$   | 6.3       | 7.3               | 6.4  | 8.0               |
| EGNN $[32]$        | 11        | 12                | 12   | 12                |
| $\mathrm{ET}$ [40] | 6.2       | 6.3               | 6.5  | 7.6               |
| NoisyNodes $[58]$  | 7.3       | 7.6               | 7.4  | 8.3               |
| PaiNN [27]         | 5.9       | 5.7               | 6.0  | 7.4               |
| → Allegro, 1 layer | 5.7(0.2)  | $\underline{5.3}$ | 5.3  | $\underline{6.6}$ |
| Allegro, 3 layers  | 4.7 (0.2) | 4.4               | 4.4  | <b>5.7</b>        |
|                    | (0.2)     | 1.1               | 1.1  |                   |

Beyond accuracy: benchmarking the transferability of Allegro



| Test  | <br>T = 1200K |
|-------|---------------|
| Test  | <br>T = 600K  |
| Train | <br>T = 300K  |

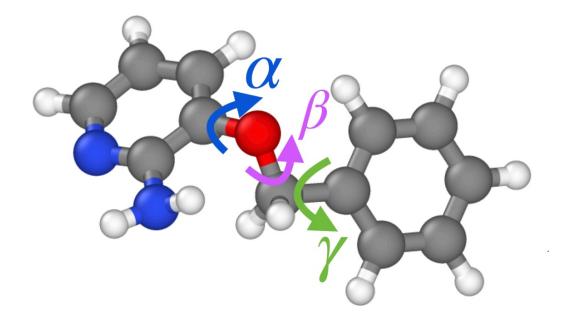
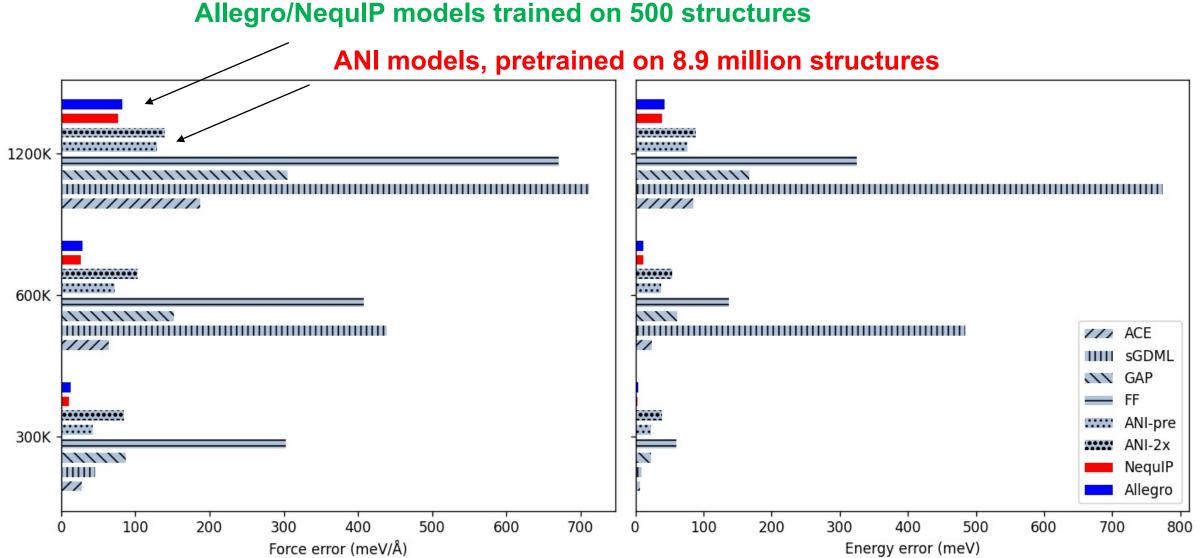


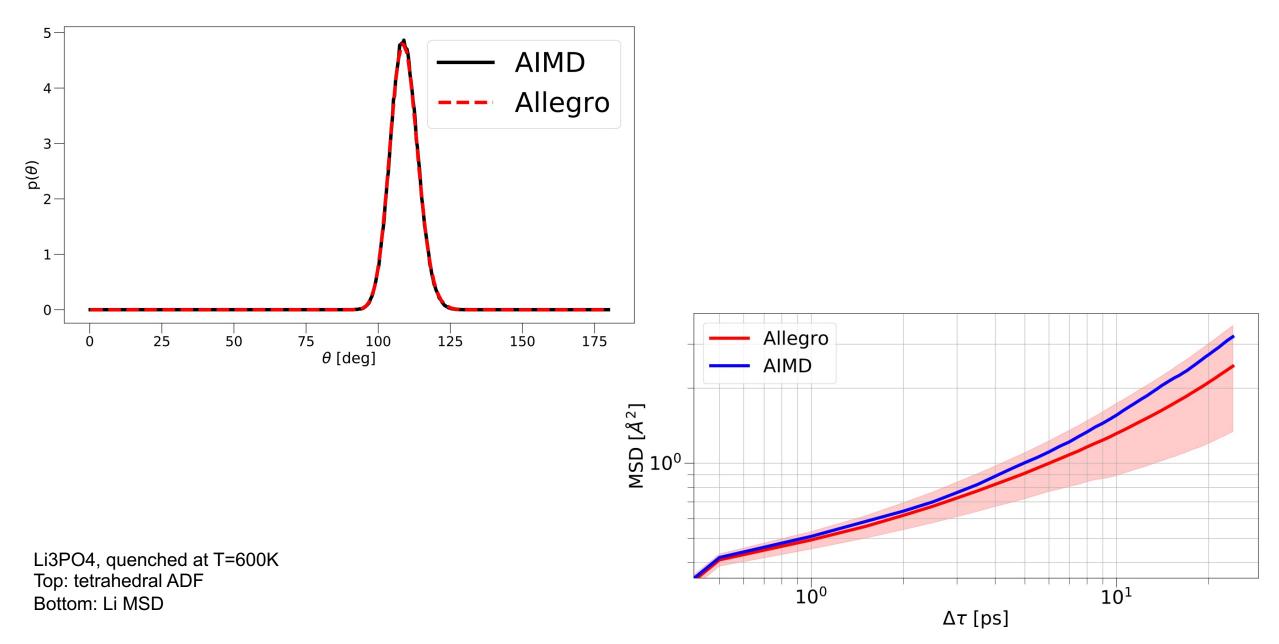
Figure from: Kovacs et al., 2021, JCTC

#### **Allegro shows strong OOD-generalization**



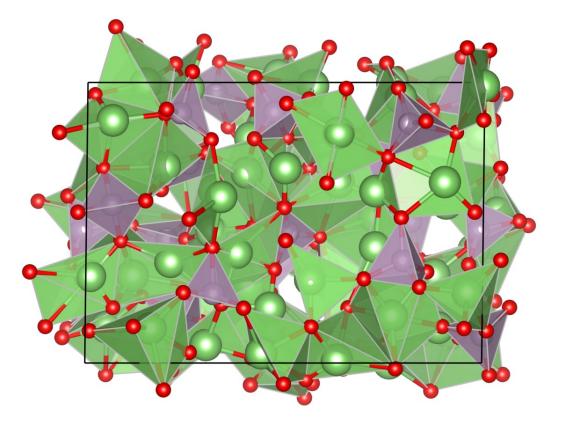
Numbers for models besides NequIP and Allegro are from [1] Kovacs et al., 2021, JCTC

#### Allegro predicts the structures + kinetics of complex materials



Allegro: speed

# **32.4 ns/day** on a DFT sized system (192 atoms)



#### Allegro's accuracy scales...

#### • **O**(**N**) in the number of atoms

contrast:  $O(N^2)$  global descriptors such as sGDML<sup>1</sup>

#### • **O**(**M**) in the number of neighbors/atom

contrast: some  $O(M^2)$  deep learning approaches such as DimeNet<sup>2</sup> or Equivariant Transformers<sup>3</sup>

### • O(1) in the number of chemical species

contrast: local descriptors like SOAP —  $O(S^2)$  — and ACE<sup>4</sup>:  $O(S^{body order - 1})$ 

[1] Chmiela, S., Sauceda, H. E., Muller, K.-R. & Tkatchenko, A. Towards exact molecular dynamics simulations with machine-learned force fields. Nature Communications 9, 3887 (2018).

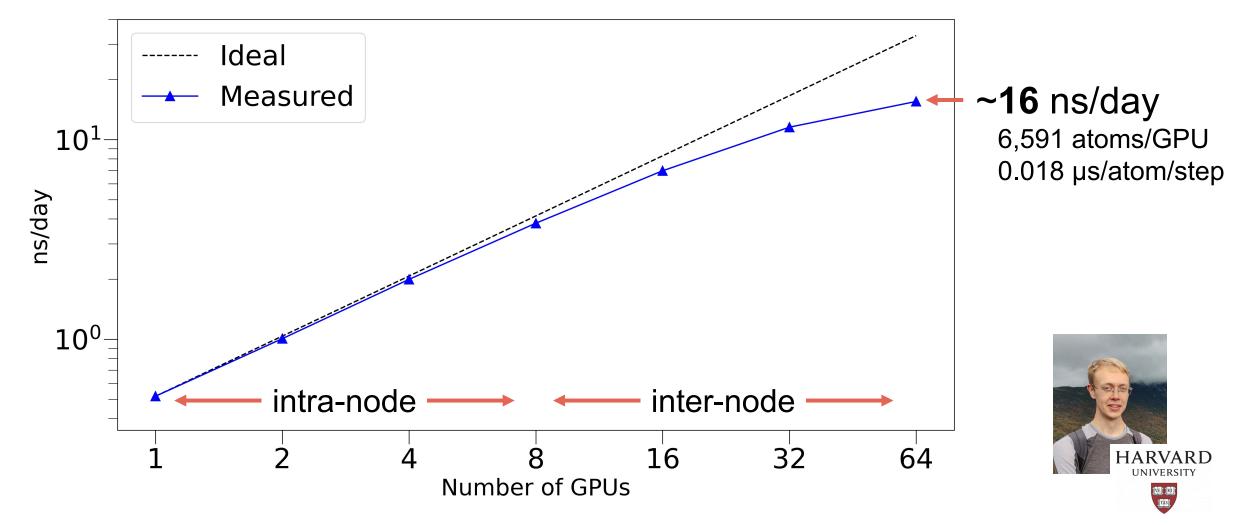
[2] Klicpera, J., Groß, J. & Gunnemann, S. Directional message passing for molecular graphs. arXiv preprint arXiv:2003.03123 (2020).

[3] Tholke, P. & De Fabritiis, G. Torchmd-net: Equivariant transformers for neural network based molecular potentials. arXiv preprint arXiv:2202.02541 (2022).

[4] Drautz, R. Atomic cluster expansion for accurate and transferable interatomic potentials. Physical Review B 99, 014104 (2019).

Allegro can **practically** scale... ...for a fixed system size

#### Allegro: strong scaling on 421,824 atoms



Simulations run in LAMMPS on NVIDIA A100 GPUs; 8 GPUs / node. Timestep: 2fs.

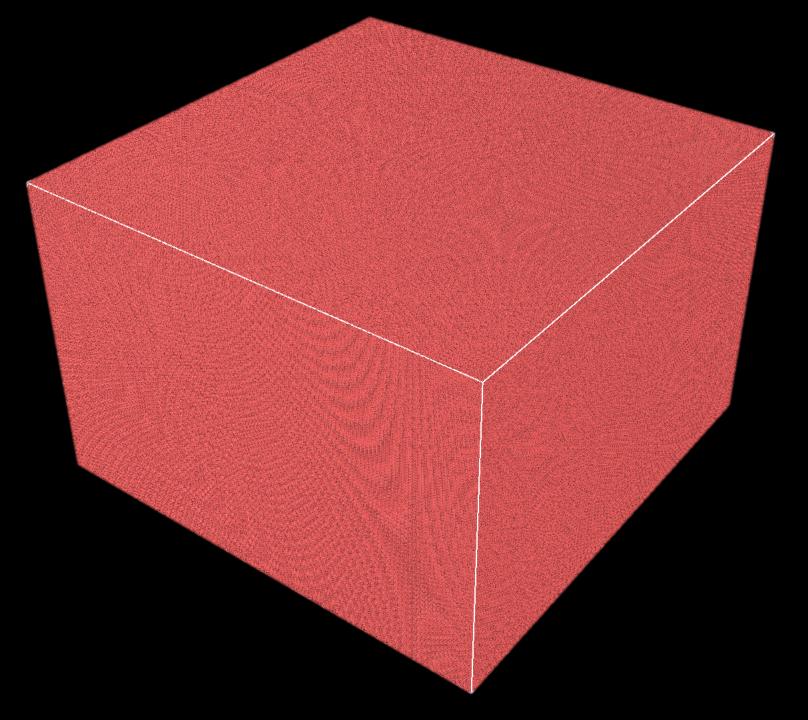
Anders Johansson

Allegro can **practically** scale... ...to extremely large systems

## **100,000,000** atoms

# 1.5 ns/day

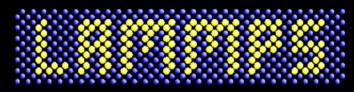
## on **16x8 A100** GPUs



## **100,000,000** atoms

# **1.5** ns/day

### integration with





<u>Neural Equivariant Interatomic Potentials</u> github.com/mir-group/nequip github.com/mir-group/allegro

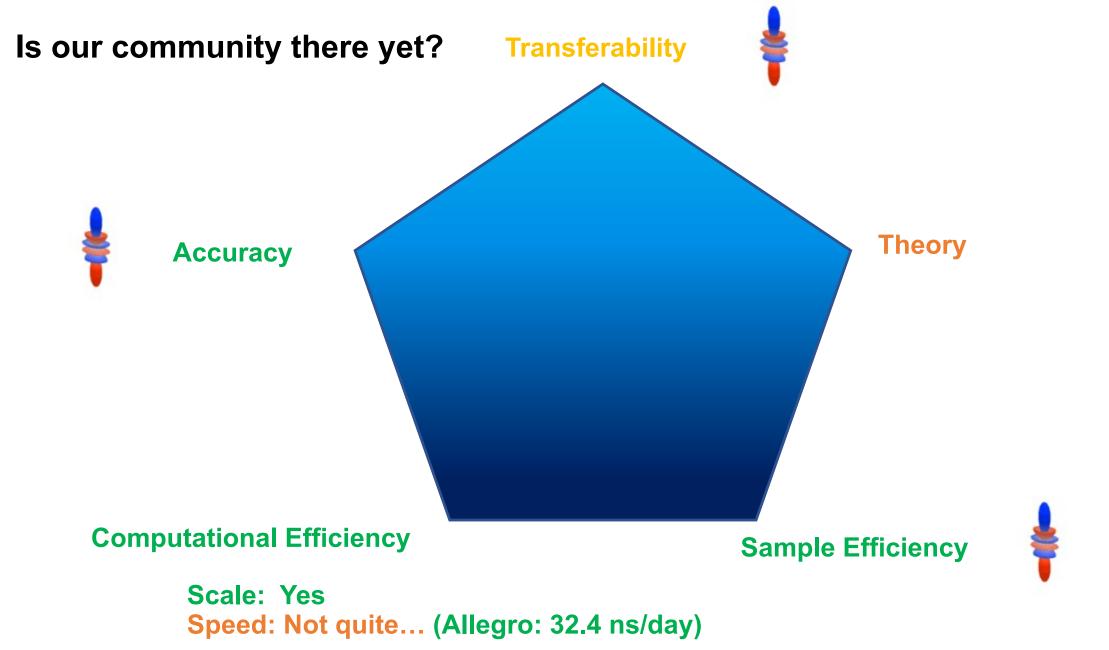
- Modular open-source framework for designing, training, testing, and deploying equivariant MLIPs
- Allegro is implemented as an extension package
- Optimized for GPUs with PyTorch
- Full TorchScript support for Python-free deployment, including to our LAMMPS plugin pair\_allegro

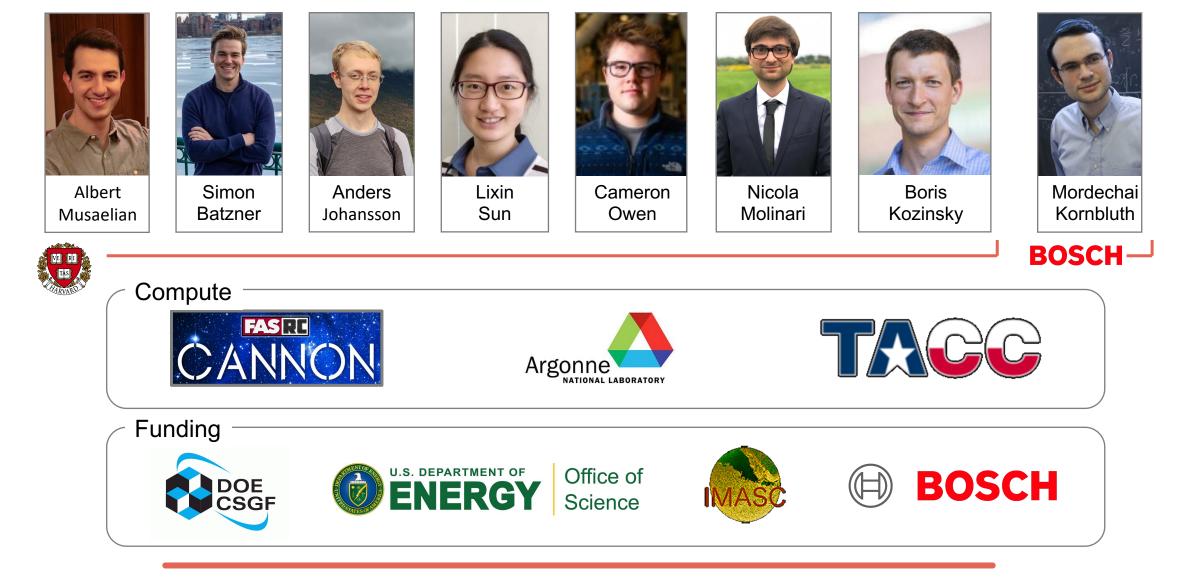


NequIP



Allegro







Thank you!



Harvard John A. Paulson School of Engineering and Applied Sciences